
AD-A09A la9 SCIENCE APPLICATIONS INC MCLEAN VA F/A a/3

A REVIEW OF OCEAN MOOELS.(U)AA9B... JAN 81 W J GRABOWSKI, G T HEBENSTREIT N0001-78-C08N9

UNCLASSIFIED_SAI-1 
-6 A"; Pz~hE~sEEE

EhEEEEEEohEEEE

I EonEEE



102ml 1 2_11111 .0 I 1114 *2

IIIIIN IIII 8
111111_.25 I~II~ 1111.6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF SlANDARDS-1963 A





LEVEL!ot
A Review of Ocean Models

I SAI-81-346-WA

ITI SELECT
1 APR 2 4 196

I E_

I~rp~ f ~ta Publc 1 d4inCM

ATLANTA *AM 01101 OT CHICAO * CLEVELAND * mU e*m * SW WS*IA JOLA

X / U N * LOS MISSES SANPRANCUSO*SAL S~~ UCSON *WASNNSV01



I!

Review of Ocean Modelsp

I.

SAI-81-346-WA e NTI cesionFo
____DTIC TABUnanounced

By____
listribution/
Availability Codes

23 Jano l y

.. ... .. i ... . s Special

fH '-40/Grabowski7 /) r )Gerald T./Hebenstreit j

i j __ .for;

,1  -notract No r NP,1411-78-C-849Naval ean Research-amx Development Aetf.tv y

NSTL Station, Mississippi 39529

S / / 1 ? Z 4 ~ p ' ' ~ ~ K-

SCIENCE APPLICATIONS, INC.

1710 Goodridge Drive, P.O. Box 1303
McLean, Virginia 22102
(703) 821-4300

* / '1 2 i



UNCLASSIFIED
.= 'r -.AS rICA'IzP: Or THIIS PANE '0W.*i D00 Enteed).

READ !n:STRtJCT10N5REPORT DOCUMENTATION PAGE I BruORE ECM? E7. IFORM
- . GOVT AC ESSION NO. 1 3. RECIPIENT'S CA!ALOG NUMBER

A .E (and s'b£ifte) . TYPE Ci REPCR, 6 PER10 COVERED

* A Review of Ocean Models Final
9/15/78 - 1/30/81 !"

6. PERFORPMING OR.;. REPO T Uuh bER

SAI-81-346-WAY
7. A..TMTD. s) b. CONTRACT OR GRANT NUMERfe)

Walter J. Grabowski
Gerald T. Hebenstreit N00014-78-0849

3. PEAVDAMNG ORGAN':ZATIOtJ NAME AND ADDRESS 10. PROGRAM rI.EM.NT. PROJECT. TASK

Science Applications, Inc. AREA A WORK UNIT NUMBERS
1710 Goodridge Dr.
McLean, Virginia 22102
1 I. CO. TRL ,..iNG OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research 1/30/81
800 N. Quincy Street 3. NUM ER OF PAGES

Ariington, Virginia 22217 270
I. MONITZR.;NG AGENCY NAtAE & ADDRESS(It dififerent fl.M Contro"l/ng Office) IS. SECURITY CLASS. (of WAhe Ir tp
Scientific Officer I
Ocean Exploratory Development Office Unclassified
Naval Ocean Research & Development ActivitU
NSTL Station, Bay St. Louis, MS 39529 .sa. CASSI,ICATION DOWNGRADING' "7 ' " CH £ULE

ATTN: Dr. E. M. Stanley, NORDA, Code 500 N/A
16. DIS RIg..TION STATEMENT (c! thlP Repot)

!7. DISTP!!S TION STATEMENT ({0 the abotroct entered). Bj ik 20, it dflopnft from Repeor)

It. SUPPLEmENTARY NOTES

19. KCY WCR DS rContinu. on tveto* de It n .coAa." mnd idntify by block nanb.)

Ocean Models Internal Waves
Circulation Models Fine Structure
Fronts Mixed Layer DynamicsEddies

per Ocean Models

"This report is a review of current trends and approaches to
modeling various ocean phenomena. We begin with a brief discussion
of large scale circulation models. This leads to a summary of
m6dels of large (i.e., tens of kilometers) fronts and attempts to
model them. The next section is a detailed discussion of upper
ocean dynamics and the models used for simulations. The final sec-
tion discusses Garrett-Munk type internal wave models and models of
the effects of finestructure.4-

DD 1473 EDTO.'.,I$OBSOLTE,',, b"o:.Lu.o,,., o1 UNCLASSIFIED
SECURITY CLASSIfICATION OF TMI$ PAGE (*on b.ote 0,044)



TABLE OF CONTENTS

Page

Section 1: REVIEW OF OCEAN MODELS ...................... 1-1

Section 2: NUMERICAL MODELS OF LARGE-SCALE OCEAN
CIRCULATION .................................. 2-1

Section 3: MODELS OF OCEANIC FRONTS ................. 3-1

Section 4: UPPER-OCEAN MODELS ........................... 4-1

Section 5: INTERNAL WAVE MODELS ......................... 5-1

4

A.



Section 1

REVIEW OF OCEAN MODELS

The ocean is continuously in motion. The internal

and external forces which cause oceanic motions are bound

together in an incredibly complex network of actions and

interactions. One approach oceanographers have used to sort

out and study these motions is the development of analytical

and, with the advent of computers, increasingly sophisti-

cated numerical models which represent, in a sense, best

estimates of the nature of the driving forces and inter-

action processes which keep the ocean moving. This document

is intended to serve as a review of the types of modeling

currently underway in the physical oceanographic community

and as an indicator of future directions in research.

Researchers are continually developing and refining models

as our understanding of the physics of oceanic motions

evolves. For this reason no review of this type can be

totally complete and up-to-date. We do feel that it repre-

sents a reasonably thorough "snapshot" of several phases of

ocean modeling as they were in late 1979 or early 1980.

hWe have chosen to view the ocean as a descending

hierarchy of scales of motion. At the high end are the

large scale motions which act as sources and sinks for

energy at smaller scales. At the low end are the internal

waves and fine scale motions. In between are the frontal

and upper ocean models, which somehow seem to act as

"middlemen" in the distribution of energy throughout

the oceans.
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Each section is written as a nearly self-

contained unit, with its own internal numbering system

and references. We do. however, attempt to smooth the

transition from one chapter to the next by addressing the

interconnections between the scales of motion.

Section 2 describes numerical models of large-

scale ocean circulation features. These are motions with

length scales from many tens to thousands of kilometers and

time scales from months to centuries. These motions set the

background pattern upon which smaller scale motions are

superimposed. They also act as sources and sinks for energy

in the smaller scales.

This section is intended to provide the reader

with a sense of the power and complexity of models of

large-scale models without providing a blueprint for

actually implementing the models. We have consciously

avoided detailed description of some important aspects of

this type of modeling. Thus the knowledgeable reader will

not find discussions of the various numerical schemes used

to implement the models on digital computers; and such other

topics as the variety of forcing functions and boundary

conditions have only been touched on lightly. All of these

aspects, while crucial for successful implementation of any

specific model, could, we fear, deter the reader from an

appreciation of the wide range of situations to which

large-scale models have been and are constantly being

applied. We hope that this section, while somewhat brief,

achieves its designed purpose.*

Since Section 2 was completed, a review emphasizing the
use of coupled atmosphere-ocean circulation models has
appeared (Haney, R.L. Reviews of Geophysics and Space
Physics, 17, 1979, pp 1494-1507).

1-2 1



Section 3 discusses the existing models of oceanic

fronts. Little is known about the role of fronts in the

overall dynamics of the ocean system, although they do seem

to provide sinks for some energy from larger scales and may

contribute to the development of smaller-scale motions. Few

numerical models of fronts exist, but this state will no

doubt change as more attention and interest is focused on

them. We have attempted to provide the reader with a sense

of both the extent and nature of fronts and of the modeling

approaches currently being taken to understand them.

Section 4 discusses models of the dynamics

of the upper ocean. This region, consisting of the mixing

layer and the seasonal thermocline, is marked by short-term

(scales of hours to days) variations in thermohaline and

velocity structure. It forms the oceanic portion of the

air-sea boundary layer and, as such, the entry point through
which atmospheric energy is passed to the ocean. The fact

that many of man's important oceanic activities take place
within this region makes an understanding of the processes

affecting it vital. The emphasis in this section is on one-

dimensional models (i.e., models which vary only in depth

and time). The ocean is, of course, three-dimensional,

but, provided certain assumptions are met, one-dimensional

models can prove quite useful in examining the dynamic

processes which shape the upper ocean. Three-dimensional
upper-ocean models are being developed by a number of

research groups and reports should.soon begin to appear in

the literature.

Section 5 discusses internal-wave models. This

section marks the end of our descent from very large

to small scale motions. The information presented in

this section relies heavily on empirical knowledge of

1-3



internal waves. We know a great deal about the mani-

festations of internal-wave activity, but relatively little
about their relation to other scales of motion. Internal

waves can be enhanced by fronts (both atmospheric and
oceanic) and by perturbations in the mean flow due to
topography. Internal-wave energy may help to feed smaller

scale (turbulent) motions. The modeling of internal

waves, in the sense of simulating the processes which lead

to generation and propagation, is still in its early stages.

Several topics which are related to internal
wave models have not been included in this section. One,
alluded to above, is the question of modeling the gener-
ation and dissipation of internal waves at all frequencies

in the free wave.band. Another is the generation and
propagation of waves at near-inertial and sub-inertial

frequencies. The underlying question which has not been
addressed pertains to the nature of the forces and inter-

actions which determine the form of the energy spectrum
across the entire range of frequencies and wavenumbers at

which internal motions are observed. The reason for the
omission of topics such as these is the fact that only

recently has the oceanographic community attempted to come

to grips with them.

The re.ader will no doubt notice a bias in the
structure of this review. As the scales of motion and time

get smaller the treatment of the subject gets more detailed.
This is a reflection of our view of the direction of the
NORDA program, which currently tends to concentrate on the

smaller scales. In this view the large-scale motions are

primarily important in their role of providing the mean

1-4 I
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motions. Fronts play a somewhat more important, although

still unclear, role in feeding the smaller scales. The

state of the upper ocean directly influences these motions

and thus must be understood in greater detail.

We should reiterate to the reader that this

review can only serve as an instantaneous summary of the

state of our ability to model oceanic motions. New percep-

tions, new methods, new applications are continually evolv-

ing. Thus, we recognize that this document, while we have

tried to make it as thorough as time would allow, can only

serve as a basis for continued study by the interested

reader.

1

!! 1-5



Section 2

NUMERICAL MODELS OF

LARGE-SCALE OCEAN CIRCULATION

2.1 INTRODUCTION 2-1

2.2 MODEL FORMULATION 2-3

2.2.1 Basic Equations 2-3
2.2.2 Initial and Boundary Conditions 2-4
2.2.3 Sub-Grid Scale Influences 2-7

2.3 MODELS OF SIMPLIFIED BASINS 2-7

2.3.1 Wind- and Density-Driven Models 2-11
2.3.2 Bottom Topography Effects 2-15

2.4 GLOBAL MODELS 2-18

2.4.1 World Ocean Models 2-18
2.4.2 Coupled Ocean-Atmosphere Models 2-22

2.5 REGIONAL CIRCULATION MODELS 2-22

2.5.1 Arctic Ocean 2-22
2.5.2 Indian Ocean 2-24
2.5.3 North Atlantic Ocean 2-26

2.6 DIAGNOSTIC MODELS 2-28

2.7 LARGE-SCALE ANOMALY MODELS 2-29

2.8 EDDY-RESOLVING MODELS 2-30

2.9 APPLICATION OF LARGE-SCALE MODELS TO SMALL- 2-37
SCALE PROBLEMS

REFERENCES 2-40



Section 2

NUMERICAL MODELS OF LARGE-SCALE OCEAN CIRCULATION

2.1 INTRODUCTION

Large-scale ocean circulation models attempt

to describe ocean movements which occur over long distances

and long periods of time. These motions typically have

time scales from months (seasonal variations) to hundreds of

years (basin overturning) and length scales from tens

of kilometers (boundary currents, eddies) to thousands of

kilometers (basin-sized gyres). The resolution of the

numerical models is geared to accommodating these scales.

Although simulations explicitly aimed at resolving eddy-

sized (a hundred kilometers, say) motions have recently

appeared in the literature, the majority of circulation

models to date have attempted to describe the dynamics of

basin-scale mean (time scales of 100 years or more) flows.

The following discussion is intended to provide

the reader with an overview of the bases for large-scale

circulation models. We will first discuss the equations

which go into circulation models, and then describe the

development of numerical circulation models. The early

efforts involved geometrically simplified basins and sim-

plified form of forcing functions. Once the ability of

numerical models to successfully describe circulation

2-1
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dynamics was established, applications to realistic cases

involving close approximations to actual basin geometry and

realistic forcing functions followed. These are discussed

in the sections covering global models, regional models, and

diagnostic models.

Current trends in circulation research are ad-

dressing two very important problems: (1) the response of

the mean flow to time-varying forcing functions on the scale

of months to years, and (2) the generation and dynamics of

eddy-scale motions. Progress in these areas and potential

benfits are dislcussed in Sections 2.7 and 2.8. The final

section will airectly address the usefulness of the large-

scale models to programs which are interested in smaller

scales of motion.

Two approaches to large-scale numerical modeling

exist: predictive and diagnostic. Predictive models start

with the ocean in some initial state (i.e., some specified

density and current structure) and allow the models to "spin

up" to equilibrium or quasi-equilibrium under the influence

of specified forcing. The time-varying progress of the

density and cur:g!at fields toward equilibrium is predicted

by these model%. Diagnostic models also start with some

initial state (usually based on observed density structure

in the ocean) and allow the ocean to spin up. But the ini-

tial density field is held fixed and only the currents are

predicted. The majority of diagnostic model research has

been carried out in the Soviet Union. We will restrict our

discussion largely to the more readily accessible predictive

models.

2-2
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A discussion of the numerical schemes used to

implement the mathematical forms of the models on digital

computers is beyond the scope of this review. All of the

models discussed employ finite-difference approximations

of the partial differential equations of motion and some

type of three-dimensional grid lattice to represent the

horizontal and vertical locations of the coordinates at

which variables are defined.

2.2 MODEL FORMULATION

2.2.1 Basic Equations

All large-scale circulation models are based on

some combination of conservation equations for mass, momen-

tum, heat, and salt, depending on the processes and varia-
bles required for a specific study. The basic set of

equations used to represent large-scale circulation can be

expressed as follows:

;t u+ u'Vu + k x fu + w ;zl

= -r - 1 Vp + K mazz] + AmV 2 (2.1)

;t(T,S) + u.V(T,S) + wz (T,S)

= Khazz(T,S) + AhV 2(T,S) (2.2)

V"V + azW 0 (2.3)

z - pg (2.4)

p - p (T,S,p) (2.5)
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The variables and parameters in these equations, as well as

others which will be encountered in this review, are des-

cribed in Table 2-1.

Equation (2.1) represents the conservation of

momentum, (2.2) the conservation of heat and salt, and

(2.3) the continuity of mass. Equation (2.4) expresses the

assumption that pressure below the sea surface is strictly

due to hydrostatic forces. This approximation is generally

valid in the ocean since mean vertical velocities tend to be

quite small. The use of Pr in (2.1) and P in (2.4) indi-

cates the use of the Boussinesq approximation, which assumes

that variations in density are negligible unless they appear

in conjunction with g. The hydrostatic and Boussinesq

approximations appear in all large-scale models. Equation

(2.5) expresses the dependence of density on temperature,

salinity, and pressure. The form of the expression varies

widely, although most models which require an equation of

state generally assume a linear dependence of density on

temperature (and salinity when calculated).

2.2.2 Initial and Boundary Conditions

A time-varying model requires initial and boundary

conditions to define a unique solution. Initial conditions

for most predictive models tend to consist of a relatively

simple density structure (homogeneous, linearly stratified,

etc.) and velocity components which are set to zero. The

ocean is then spun up from this simplified state.

2-4
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Table 2-1

NOMENCLATURE

tz - time and vertical space coordinates

- horizontal velocity vector: u - (u, v)

A - horizontal transport vector: A - (uh, vh)

w - vertical velocity component

T - ocean temperature

S - salinity

P - in situ density

P - reference density

p - ocean pressure

g - local acceleration due to gravity

f - Coriolis parameter

Qs - surface net heat flux

h - depth below some reference level (usually mean sea
level

V - horizontal gradient operator whose form depends on
the model coordinate system

- partial derivative with respect to subscriptedx variable

KK - vertical eddy exchange coefficient due to conduc-
h tivity (h) and viscosity (m)

Ah, Am - corresponding horizontal exchange coefficients

BhBm - higher order analogs to Ah,m

k - vertical unit vector

n - unit vector perpendicular to a boundary

s - subscript indicating quantity defined at the sur-
face of the ocean

2-5
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Boundary conditions play a vital role in simula-

tions, since they drive the interior to a solution. Condi-

tions for velocity components along closed (impermeable)

lateral boundaries and bottom boundaries usually assume

combinations of no-slip (i.e., (u,wJ - 0) for the component

tangential to the boundary and no-flux (i.e., k.n, zW] - 0)

through the boundaries. Fluxes of heat and salt are usually

not permitted through closed boundaries. If a lateral

boundary is open rather than closed, the usual procedure is

to specify values of currents, heat, and salt (or their

fluxes) along the open portion of the boundary at each

point.

Surface boundary conditions provide the atmos-

pheric energy input which drives circulation models. most

employ formulations of mean* surface wind stress (T.) and

heat flux (Qs) which vary in space. Little work has been

done with time-varying surface boundary conditions in large

scale models, with the exception of the long-term anomaly

models. A rigid ocean surface is usually specified (w - 0),

which acts to filter out externally generated high frequency

surface gravity waves and allow larger time step sizes than

would otherwise be possible.

* In most cases, mean implies averaes over many years,
rather than seasona or yearly averages.

2-6 1
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2.2.3 Sub-Grid Scale Influences

The terms in (2.1) and (2.2) contain eddy ex-

change coefficients which serve to parameterize the hori-

zontal and vertical fluxes of momentum, heat, and salt which

exert an important influence on the mean flow but which

occur on length scales smaller than the grid spacing of the

model. These terms allow the numerical scheme to include

these motions without requiring grid spacing so small as to

make calculations prohibitively expensive.

Values of the A's and K's are generally dictated

by vague notions of what oceanic values should be and by the

computational requirement to preserve numerical stability

while retaining relatively coarse grid spacing. As

Table 2-2 illustrates, no general agreement exists on

values of the coefficients, although the orders of magnitude

are similar. The magnitudes of these coefficients should be

a function of the resolution of the model since it deter-

mines the scales of motion which are parameterized.

2.3 MODELS OF SIMPLIFIED BASINS

The earliest numerical circulation studies were of

J the behavior of bodies of water in geometrically simple

basins under restricted conditions. These studies were

attempts to elucidate and extend earlier analytic work.

Studies by Bryan (1963), Veronis (1966a,b), and Blandford

(1971) established the varying influences of lateral fric-

tion and bottom friction in the formation and behavior of

boundary currents in a homogeneous ocean in a flat-bottomed,

rotating rectangular basin being acted on by a steady wind

stress.

2-7
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The real ocean is not homogeneous, however, but

baroclinic (i.e., density and pressure surfaces are not

necessarily parallel). Thus, the next step was to study the

effects of density stratification in simplified basins. The

studies which included baroclinicity provided the catalyst

for present day circulation studies.

2.3.1 Wind-driven, Baroclinic Models

Bryan and Cox (1968a,b) described results of an

investigation of the role of stratification on the circula-

'tion of a wind-driven ocean in a simplified basin. While no

explicit attempt was made to apply the model to a specific

ocean, the model basin (650 S to 650 N, 00 to 450 E) had

roughly the dimensions of the Atlantic basin. Mirror sym-

metry across the equator was assumed so that only the north-

ern hemisphere was treated. Salinity variations were not

included in the model.

The model comprised six layers in the vertical --

three above the main thermicline and three below. The hori-

zontal grid spacing in the ocean interior was 30 and the

time step was roughly three hours. One non-dimensional time

unit corresponded to 8.7 years and thus each time unit

comprised approximately 20,000 time steps. The lateral

boundary conditions specified no-slip and complete in-

sulation. The surface was a rigid lid.

The surface boundary conditions specified were

Ts = T* G1(o) (2.6)

T G2( ) (2.7)

2-11



rr
where T* and r* are maximum and heat flux wind stress values

and GI(4) and G 2(") were defined with the latitude depen-

dence shown in Figure (2.1). The wind stress form defined

three atmospheric gyres: a small counterclockwise gyre near

the equator, a large clockwise gyre between roughly 20ON

and 500N, and an intermediate counterclockwise subarctic

gyre.

The simulation was run for over 200 years begin-

ning from a horizontally uniform stratified density field at

rest. The first phase of the simulation, which spun the

model up to near-equilibrium, lasted for 190 model years on

a grid with uniform 30 grid spacing. The second, shorter

phase continued the simulation on a variable grid with

spacing as fine as 0.30 along the lateral boundaries to

resolve motions due to frictional, mixing, and inertial

forces. Figure 2.2 shows the vertically integrated (a) and

meridionally integrated (b) transports at the end of the

first phase. The intensified western boundary flow and the

eastward flow along the equator agree with observations and

theoretical analyses of Atlantic circulation.

Figure 2.3 shows the time-dependent mass transport

stream function in the region of the western boundary. The

sequence shows the generation, growth, and decay of gyres

separating from the boundary in the vicinity of the latitude

which marks the change from the cyclonic subarctic wind gyre

to the anticyclonic, subtropical gyre. This transient be-

havior is similar to the behavior of the Gulf Stream as it

separates from the continental shelf. These transients only

appear when resolution is improved along the boundary.

2-12 I
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Figure 2-1. Temperature distribution and the X-directed
component of the wind stress specified for
surface boundary conditions by Bryan and Cox
(1968)
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Figure 2.2. Total mass transport integrated in the vertical
(a) and longitudinal (b) directions by Bryan
and Cox (1968)
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Haney (1974) developed a similar model for a basin

stretching from 510S to 490 N. Table 2-2 shows the increased

exchange coefficient values used in this model. Wind stress

was asymmetrical about the equator; surface heat flux was

expressed as

Qs = Q2 (TA*-Ts)

where T s is the temperature of the uppermost ocean level,

* is an atmospheric equilibrium temperature (defined byTA

Haney), and Q2 is a coupling coefficient. Forms of

and Q2 appear in Fig. 2-4.

Haney's results are similar to those of Bryan and

Cox. His vertically integrated mass transport streamfunc-

tion field is' reproduced in Fig. 2-5. Both hemispheres

showed strong westward intensification and the strong equa-

torial transport was once again present. The failure of the

model to produce transient motions separating from the west-

ern boundary flow is important, because it shows that the

grid spacing (2.50 in latitude, 30 in longitude) and ex-

change coefficient values were not small enough to allow

generation of the eddies, even though the size of the eddies

seen in the Bryan and Cox results (roughly 50) could have

been resolved once they were produced.

2.3.2 Bottom Topography Effects

The two models referred to above dealt only with

the effects of wind stress and density stratification in

flat-bottom basins. Several additional model studies

addressed the influence of variable bottom topography.

2-15
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Holland (1973) modeled a rectangular basin with a continen-

tal shelf/slope structure along the western boundary. His

results indicated that bottom torques associated with the

slope played a major factor in steering the resulting flow.

Vertically integrated mass transport for three different

simulations are shown in Fig. 2-6. The intensification
brought on by the combination of baroclinicity and variable

depth is quite striking.

The success with which idealized models such as

those mentioned above reproduce many of the known features

of large-scale ocean circulation (westward intensification,

eastward equatorial flow, separation of eddies, etc.) lends

credibility to studies which seek to apply these models to

the circulation of realistic basins.

2.4 GLOBAL MODELS

The ultimate utility of large-scale circulation

models is to describe the entire world ocean system and,
even further, the coupled world atmosphere-ocean system.
The development of increasingly larger and faster computers

has made modeling on a global scale feasible.

2.4.1 World Ocean Models

Cox (1975) reported preliminary results obtained

with a model of the world ocean system utilizing the Bryan

and Cox model. The grid, which is characterized by 20

spacing, extended to 690 north and south. The grid system
actually consisted of three grids: a large grid covering

2-18
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the region from 620S to 62 0 N with origin at the equator,

and two smaller spherical grids, one for each polar region,

with axes running through the appropriate pole. All three

grids overlapped considerably to simplify splicing them

together. Realistic bottom topography was employed.

The lateral boundary conditions called for no-slip

and no-flux at closed walls. At the surface, temperature,

salinity, and wind stress were specified.

Cox ran three experiments. In all three, the

ocean was initially at rest. In the first case, the ocean

was specified as isothermal and isohaline and maintained

that way throughout the run. In the second, the ocean took

on mean temperature and salinity fields as determined from

NODC records and were held constant. In the third, the mean

temperature and salinity fields were once again imposed as

initial conditions, but this time were allowed to vary with

the current field. The horizontal mass transport stream

functions predicted for Case III are shown in Fig. 2-7.

Because of the long time period required to obtain equilib-

rium between the vertical advection and diffusion of heat,

this experiment could not be run to steady state. The flows

produced by the model agreed well with observations, al-

though the transport magnitudes were not necessarily realis-

tic.

In the barotropic case, Case I, flow tended to

follow isobaths, and circulation gyres were relatively weak.

Addition of baroclinicity (Case II) reduced the steering

effect due to bottom topography, but intensified the circu-

lation gyres, as well as the Antarctic Circumpolar Current.
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The increased organization and coherence in the Northern

Hemisphere gyres for Case III, in which the density field

was allowed to adjust along with the flow field, could be

due to the inability of the model to resolve eddy motion

effects which should be present in the real data field.

2.4.2 Coupled Ocean-Atmosphere Models

Coupling of large-scale ocean and atmosphere

models is a logical application for ocean circulation models

since the two fluids are so inextricably dependent upon one

another. One such coupled model is being developed at GFDL.

Manabe et. al. (1975) describe the atmospheric circulation,

while Bryan et. al. (1975) discuss the oceanic circulation.

The oceanic model takes the approach used by Bryan and Cox

in previous studies. The main difference lies in the fact

that the surface momentum, heat, and salt fluxes are sup-

plied by the atmospheric portion of the model, rather than

imposed externally.

Results obtained with this model have been encour-

aging, although only general agreement with prevailing ideas

on ocean circulation has been obtained thus far. Continued

research using higher resolution models should improve re-
sults for both the atmosphere and the ocean.

2.5 REGIONAL CIRCULATION MODELS

2.5.1 Arctic Ocean

The Arctic Ocean and the Greenland Sea strongly

influence the rest of the world ocean. The Greenland Sea

is the source of much of the cold bottom water which plays a
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strong role in the North Atlantic thermohaline circulation.

The sea ice formed in tbe Arctic Ocean is a major factor in

the Northern Hemisphere atmospheric beat budget. Semtner

(1976) used the Bryan and Cox model, with salinity included,

to study the circulation in these basins. Approximations to

the realistic basin configurations and bottom topography

were specified.

Because of the sparseness of data, initial and

boundary conditions had to be pieced together from various

sources. Conditions of no-slip and no-flux were specified

at closed boundaries (side walls and bottom). Fixed temper-

ature and salinity fields along open boundearies were taken

from observed data, and velocities were calculated from

observed densities and mass transports.

Surface wind stresses were derived from long-term

mean atmospheric pressure fields over the area Using two

assumptions: (a) the long-term wind field is essentially

geostrophic, and (b) the long-term wind stress on the sea

ice is transmitted directly to the underlying water.

The surface heat flux was also taken from long-

term averages. A constant loss of 64 kcal/cm 2 yr was

assumed, except in areas where surface temperature dropped

below -2oC and, presumably, sea ice covered the region.

Then the heat flux was reduced to roughly 2% of its ice-free

value.I
The surface flux of salt was specified over most

of the area to reflect an excess of precipitation over evap-

oration equal to 20 cm/yr rain. Fresh water runoff from the

eight major rivers feeding the Arctic basin was included in

the appropriate locations.
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Three tests were run, corresponding to high (Case

I), medium (Case II), and low (Case III) wind stress magni-

tudes. Simulation periods for the cases varied from 107

years to 36 years. Only Case 1 (107 years) included the

Greenland Sea. Verification of the model predictions was

necessarily limited because of the sparse data base avail-

able. Qualitative agreement with observations seemed good,

however. The integrated transport stream functions in Fig.

2-8 show the two-gyre system observed in this area.

Fine tuning of the exchange coefficients presented

a major problem with this model. The AM and AH values bad

to be high to suppress numerical instabilities. But this

led to a situation where, depending on the wind stress mag-

nitude, either the current fields were reasonable and the

density fields weren't, or the current fields were underes-

timated and the density fields were realistic. Semtner

indicated that higher resolution (already at 10 spacing)

in the horizontal would alleviate this problem, but such a

modification would greatly increase computer costs.

2.5.2 Indian Ocean

The Indian Ocean presents an interesting problem

for study because of the seasonal variability of the Somali

Current in response to the monsoon cycle. Cox (1970) ap-

plied the Bryan-Cox forumlation (with salinity added) to

this region.

The model started with horizontally uniform tem-

perature and salinity fields. Temperature, salinity, and

wind stress were specified at the surface as functions of
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Figure 2.8. Vertically integrated transport streamfunctions
predicted for the Arctic Ocean by Semtner (1976)
Case numbers are explained in the text.

2-25



position and time using seasonal mean data. Temperature and

salinity at open boundaries were derived from observations

and total transport across the boundaries was set to zero.

The simulation spanned 192 years in three stages, with grid

spacing being successively reduced from 40 to 20 to 10.

Once again, the results agreed well qualitatively

with limited observations. As Figure 2-9 illustrates, the

Somali current oscillated between a strong northerly flow

during the southwest monsoon and a weak southerly flow

during the northwest monsoon. The phase lag between wind

reversal and current reversal agreed well with observations

also. This success shows the ability of this type of model

to deal with forcing functions with time scales of months

rather than years. However, certain discrepancies, such as

uniformly overestimated thermocline depths and underesti-

mated Somali Current transport show the need for fine tuning

of mixing coefficients if operationally useful large-scale

models are to be developed.

2.5.3 North Atlantic Ocean

Friedrich (1970) described a model of the North

Atlantic based on the Bryan and Cox approach. His formu-

lation of the equations predicted vorticity, temperture,

salinity, and velocity variations from mean values

Conditions of no-slip and no-flux were specified

at closed boundaries, while temperature, salinity, vorticity

flux and momentum flux were specified at open boundaries.

Temperature, salinity, vorticity, and velocities were held

fixed in the vertical at the grid point corresponding to the

Straits of Gibraltar to simulate the influx of Mediterranean j
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Figure 2.9. Longshore velocity component predicted by Cox
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I
water into the Atlantic. Surface wind stresses were those

prescribed by Haney (1974). The surface temperature and

salinity fields were prescribed by determining mean winter

and summer values at each point and allowing for a sinusoi-

dal oscillation between these extremes through the course of

the year.

The model was applied in three phases:

An 80-year spinup using 50 grid spacing, a 70-year

continuation using 30 grid spacing, to take the model to

near-equilibrium and a second continuation using 10 grid

spacing. Results from this last phase were not reported, and

only some portions of the results from the second phase were

discussed.

The predicted time-varying temperature and salinity

fields agreed reasonably well with observations, and the

transport stream functions reproduced many of the large-

scale features of the Atlantic circulation. The combination

of course grid spacing and high horizontal mixing coeffi-

cients probably prevented more accurate simulations.

2.6 DIAGNOSTIC MODELS

All of the studies we have looked at up to now

have employed fully predictive models. This type of model

has been used almost exclusively for large- and mesoscale

studies, in preference to diagnostic models. Two of the

reasons for this preference are: (1) diagnostic models

require comprehensive data sets from which to build the

density field to drive the models, and (2) predictive models

2-28



provide information about the variability of potential

energy, which is essential for an understanding of the

energetics of ocean circulation.

Soviet modelers have devoted a considerable amount

of effort to developing diagnostic models. Sarkisyan and

Keonjiyan (1975) and Sarkisyan (1977) present detailed sum-

maries of this approach. The fundamental question addressed

by diagnostic models is: given a specific three-dimensional

density structure in the ocean and specified wind stress or

sea-level pressure fields at the surface, what can be said

about the flow velocity? Numerous studies using this tech-

nique have arrived at the same conclusions about the rela-

tive importance of wind stress, bottom topography, baroclin-

icity, etc., as have resulted from predictive models. Diag-

nostic models are able to predict believable mean flow re-

gimes as long as the prescribed density field is free from

serious errors. This last factor, of course, represents a

major stumbling block in application of these models.

2.7 LARGE-SCALE ANOMALY MODELS

Another intriguing application of circulation

models is the study of large-scale (> 1000 km) and long

period (> months) variations in the mean flow of basins.

Considerable work in the North Pacific has been done by

Huang (1978, 1979). He is using a model based on Haney's

(1974) work to study the role of seasonally varying atmos-

pheric forcing in the transient behavior of the ocean. The

model was first spun up over 60 years using mean atmospheric

fields of air temperature, vapor pressure, sea level pres-

sure, cloud cover, and wind speed. The resulting heat

fluxes and wind stresses derive from bulk aerodynamic and
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climatological formulas. Once a quasi-equilibrium flow was

attained, the model, using a finer horizontal grid mesh, was

driven by seasonally varying atmospheric fields.

Results to date have been preliminary, but encour-

aging. Despite the lack of varying bottom topography, the

major time-dependent features of the North Pacific circula-

tion have been reproduced; predicted transports fall within

the ranges of observations (see Figure 2-10), as do sea sur-

face temperatures below the subarctic region (see Figure

2-11). The lack of adequate treatment of mixed layer dynam-

ics leads to poorly predicted subsurface thermal structure.

But, in general, results predicted by this model show great

potential for examining long-term variability in the mean

flow.

This study is important because it is one of the

first attempts to model the large-scale response to time

varying forcing. Research in this area should begin to

bridge the gap between the large-sale and small-scale

motions of the ocean.

2.8 EDDY-RESOLVING MODELS

Eddy resolving models address explicitly the in-

fluence of factors such as eddies and fronts which usually

have length scales below the resolution of large-scale

models and are normally treated parametrically. Recently,

efforts have been taken to study the generation of eddies

and their relationship to the mean flow.

1
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Holland and Lin (1975a, b) described a two-layer,

rectangular, flat-bottomed basin study with fine enough grid

spacing to resolve eddies. The model treats only the momen-

tum and continuity equations of the form

t L + vi'VAi + k x fA.

= -hi7Pi + Ahi 72 v + T. (i = 1,2) (2.6)

Ai = Jihi (2.7)

x
= (T s , 0) (2.8)

T2 = (0, 0) (2.9)

h1 + h2 = H (2.10)

VP2  = Vpl + g'Vh 2  (2.11)

where 11o is the total basin depth, g' is the reduced grav-

ity gA p/ Pop Ap is the density difference between the two

layers, and the subscript i refers to the layer (i = 1 for

upper, i - 2 for lower). The x-directed stress component,

Tx, varied only with latitude. The horizontal exchanges
coefficient, A, did not attempt to parameterize eddy-induced

mixing because of the fine model resolution (20 km grid

spacing) and thus took on values one or two orders of magni-

tude smaller than those used in earlier models.

The results of a large number of parametric stud-

ies indicated several conclusions:

2
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0 the model produces eddies with diameters of

220 km and periods of 64 days when the reso-

ution is fine and viscosity is small enough.

Figure 2-12 illustrates the eddy motions pro-

duced;

* the eddies are generated by baroclinic in-

stabilities;

* once the eddies have reached a statistically

steady state, Reynolds stresses act to slow

the motion of the upper layer mean flow and

drive the lower layer mean flow;

* the eddies are important to the mean flow

because they produce regions of both positive

viscosity, in which energy from the mean flow

is transferred to the eddies, and negative

viscosity, in which energy is transferred

from the eddies to the mean flow. This fact

opens up speculation on a strong role played

by eddies in maintaining mean circulation.

Semtner and Mintz (1977) performed a study of Gulf

Stream eddies using (2.1) - (2.5), without salinity. Their

model, which used a grid spacing of 37 km, employed a bottom

topography which roughly approximates that of the Gulf

Stream area. The basin started at rest with a simple, hori-

zontally uniform temperature stratification. A steady wind

stess distribution and heat flux parameter distribution as

formulated by Haney (1974) were imposed at the surface.
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A rigid surface, no flow or heat flux through the

bottom boundary, quadratic bottom stress (Tb- [ u2 + v2 ] ),

free-slip on the lateral boundaries, and no heat flux

through lateral boundaries were specified.

After a 15-year spin-up, with a 75 km spacing

grid, two experiments were performed on a 34 km grid. The

first used reduced values of AM and AH. The second

called for replacing the lateral mixing terms so that

AmV 2u becomes - BmV4U

and

Ah_ 2 T becomes - BhV 4T.

The first experiment, which started where the spin-up run

left off, showed weak mesoscale eddies developing south of

the Gulf Stream. The second experiment, which used the

final state of the first experiment as its initial con-

dition, produced strong mesoscale eddies. The Gulf Stream

jet, which corresponds to the dashed line of zero height, is

strong and quasi-steady. To the south of the jet, weak

eddies form and move westward. Figure 2-13 shows surface

heights in the late stages of the second experiment. The

Gulf Stream jet now contains noticeable meanders and eddy

activity is more prevalent than in the Laplacian experiment.

The two forms of the horizontal eddy exchange

terms produce the same levels of damping of short length

scale effects (two grid spaces and less), but the first form

also damps longer scale factors somewhat, while the second

form does so to a much lesser extent. The result is that
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the second experiment produced results which conform more

closely to observations than do those predicted by the first

experiment.

2.9 APPLICATION OF LARGE-SCALE MODELS TO SMALL-SCALE
PROBLEMS

The models discussed in this review have been

applied to problems with long length and time scales.
Problems of operational interest, however, depend on pro-

cesses with much shorter characterizing scales. Are these

models of any use in addressing smaller scale problems?

The answer seems to be "yes, but..."

The large scale circulation models could, in

theory, be refined to simulate processes with scale lengths

down to centimeters. The equations have no minimum scale

length (at least not above the molecular scale). But

such refinement would require prohibitively large amounts

of computer storage. In addition, the amount of data

needed to specify the surface boundary conditions would be

equally prohibitive. A third consideration is that the

scales of motion which drive the mean circulation are not

necessarily the same scales which directly drive small scale

effects such as mixed layers, seasonal thermocline, internal

waves, etc. Since more suitable models exist for the

smaller scale phenomena, direct application of the large

models would be unnecessarily complicated and cumbersome.

The applicability of these models can be expressed

in terms of the influence of the quasi-steady circulation on

small scale problems. The influences are twofold: active

and passive.
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The mean flows exert an active influence in that

in some sense they provide the conditions under which

smaller scale phenomena (eddies, seasonal thermoclines,

internal waves, etc.) are generated. Even if such features

are directly generated by anomalies from the mean flow,

the anomalies must derive their energy at least in part

from the steady flow.

The mean flows exert a passive influence in that

they provide the environment within which the small scale

features, once generated, either propagate or dissipate.

Large-scale models, then, can be useful in two

ways. They can be used to characterize the background

environment against which processes that effect operational

requirements evolve. They can also be used to study the

transfer of energy from oceanic scales to mesoscales and,

in conjunction with other modelling efforts, down to the

small scales. If we define the background environment

as the mean flow with long term (order of months and years)

variations superimposed, then circulation modellers such

as Huang (1978, 1979) are beginning to address this problem.

This direction of study could lead to greatly improved

descriptions and possibly predictions of ocean behaviour

in areas of interest. The hemispheric mixed-layer model

system under development by NORDA for FNWC (Clancy, 1979) is

an example of such an attempt to combine large-scale atmos-

pheric information to predict ocean behavior at localized

areas.

The second aspect of applications is being addres-

sed at the present time. The eddy resolving models are

providing tremendous amounts of new information about the
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role of eddies in the overall circulation. Related studies

(Harrison, 1978) are pointing to deficiencies in the ways

sub-grid scale motions are parameterized and suggesting more

accurate approaches.

General circulation models cannot, by themselves,

address small scale processes efficiently. They can,

however, act as an interface to mesoscale and finer scale

models which could eventually lead to greater understanding

of the processes which shape the state of the ocean.
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Section 3

MODELS OF OCEANIC FRONTS

3.1 INTRODUCTION

The term "Oceanic Front," in analogy to atmos-

pheric fronts, describes regions containing horizontal

variations of temperature, salinity, density, and sound

speed which are large compared to the horizontal distance

over which they occur. The horizontal extents of the

gradient zones range from tens of meters in the case of

estuarine and river plume fronts to tens of kilometers in

the case of the large frontal systems in the open ocean,

lateral extents vary from a few hundred meters to nearly

basin-scale (thousands of kilometers); and time duration

scales vary from hours to permanent. Fronts do not usually

result from two distinct water masses butting up against one

another and forming a vertical interface, but rather from

two masses intruding into each other and forming a sloping

interface as the lighter spreads out above the heavier. The

expression of a front at depth may be offset a considerable

horizontal distance from the surface expression.

The large open-ocean fronts are probably gener-

ated by the combined effects of differential heating and

wind stress convergence due to long term (i.e., seasonal and

longer) atmospheric conditions. Fronts on slightly smaller

scales (such as those found along the boundaries of the Gulf

Stream and the Kuroshio current) are less directly influ-

enced by atmospheric forcing than by variations in the mean
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flow. At a still smaller scale, fronts can be found along

the perimeter of warm and cold rings and in regions of

strong upwelling (or downwelling). Fronts can also be

related to tidal mixing in shallow water have relatively

short scales, although these effects are of limited impor-

tance in the open ocean. Some of the smallest scale fronts

occur in areas where strong river outflow impinges on ocean

water with markedly different characteristics. Considerable

observational effort has been expended on these flows.

An exhaustive study of all types of fronts is

beyond the intent and scope of this report. Many types

of fronts have little open-ocean importance. We will

restrict our attention to large and mesoscale fronts, with

passing reference to river plume fronts. These latter are

useful for study because much of the frontal modelling

effort has centered on these scales, and because many of the

techniques applied to river plume models are now being used

to address large scale frontal activity.

The best way to convey a sense of the variety

of situations to which the name "oceanic front" applies

is to describe specific fronts. The next section (3.2)

will discuss in some detail frontal structures in the North

Pacific and the North Atlantic. The following section (3.3)

will describe several analytical and numerical models of

fronts and their applications.
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3.2 SPECIFIC EXAMPLES OF OCEANIC FRONTS

3.2.1 North Pacific Ocean Fronts

Five large-scale semi-permanent frontal zones

occur in the North Pacific. These are outlined in Figure

3-1, taken from a paper by Roden (1975). A sixth feature -

an equatorial front in the eastern Pacific (Pak and Zane-

veld, 1974) - will not be included in this discussion.

The Kuroshio front (see Figure 3.2) exhibits

strong gradients of temperature (T), salinity (S), density

(0t) and sound speed (Cs). These fronts occur along the

interface between the warm, saline water of the Kuroshio and

the cold, fresh water to the northeast of the current. The

position of the frontal zone varies as the Kuroshio meanders.

The Oyashio frontal zone, formed by fingers of

cold, fresh water carried southward into the Kuroshio water,

contains multiple small-scale fronts (see Figure 3.3). Once

again, gradients of T, S, and Cs are strong, but density

gradients are roughly 25% as strong as those seen in the

Kuroshio. Apparently the density increase from east to west

due to decreasing temperature is offset by a decrease due to

decreasing salinity. The result is a front in which baro-

clinic flows are quite weak (Roden, 1975).

The subarctic front (Figure 3,4) is strongly

influenced by wind-driven convergence (Roden, 1975 and

1977). The upper 100 m of the front reveals relatively

small (compared to the Kuroshio front) at gradients, but

moderate gradients sloping to the south below 100 m. The
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NORTH DOLDRUM SALINITY FRONT

COUUCArCURpEA'7
DOLORUM (HEAVY RAINFALL)E

-SOUTH DOLDRUM SALINITY FRONT

Figure 3.1. Schematic map of main north Pacific fronts. (Roden,
1975). Arrows indicate prevailing current directions.
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result is that the strongest surface baroclinic flows occur

roughly 50 km south of the thermohaline front.

The subtropical frontal zone (Figure 3.5) is

strongly effected by meteorological forcing, and occurs in

regions of net convergence of surface wind stress and heat

flux. The intensity of the frontal zone is seasonal (Roden,

1974; White et. al., 1978). During periods of strong winds

(winter and spring) the frontal zone can separate into

shallow and deep zones as Ekman transport causes the upper

layer to drift northward. Roden (1974) points out that this

zone is essentially a salinity front in summer and fall (due

to radiative heating) and a thermohaline front in winter and

spring.

The doldrum fronts (Figure 3.6) are influenced by

wind stress and surface heat flux convergence, are marked by

shallow S and at gradients, but small T and Cs gradi-

ents. The strongest baroclinic flows occur roughly 180 km

southward of the surface density front.

Table 3-1 (Roden, 1975) summarizes the character-

istics of the five frontal zones. Note that the gradients

are taken over a horizontal scale of 60 km.

3.2.2 North Atlantic Ocean Fronts

The frontal zones in the North Atlantic have

not been studied in as systematic a fashion as those of the

North Pacific. Little information is available to indicate

the presence of fronts with the extreme length scales of

some of the North Pacific fronts. The fronts discussed here

occur mostly in the western boundary flows of the basin, and
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Figure 3.6. T, S, Cs and at sections across the doidrun
front at Longitude 1330W. The sections correspond
to Line E in Figure 3-1. The stations were occupied
on 18-19 October 1972 (Roden, 1975).
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Table 3-1

Characteristics of Nortb-Pacific Fronts, based on horizontal

sampling at 30 kn intervals. (Roden, 1975)

Characteristic* Kuroshio Oyashio Subarctic Subtropical Doldrum

OT(oC/60 km) 6 9 8 4 1

VS(%o/60 1in) 0.6 1.5 1.2 0.5 1.0

VCs(m/s/60 Ian) 24 39 28 12 1

Vct(Kg/m 3/60 kin) 0.8 0.2 0.2 0.8 0.7

Baroclinic

Current (M/S) 0.6 0.2 0.4 0.5 0.5

Baroclinic

Shear (S-1) 2 x 10- 5  8 x 10- 6  7 x 10-6  10- 5  2 x 10- 5

* maximum observed values
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in the Northeast Atlantic, where much of the data is concen-

trated, Figure 3.7 shows the approximate locations of major

North Atlantic fronts.

The best known frontal zones in the North Atlantic

occur in conjunction with the Gulf Stream. The slope front

indicated in Figure 3.7 arises along the interface between

the warm water in the Gulf Stream and the colder water on

the continental slopes of the United States and Canada.

Figures 3.8 and 3.9 show the marked temperature and salinity

gradients in a cross-section through the slope front on a

north-south line along a meridian which passes through

Georges Bank.

Another type of Gulf Stream-related front is

formed by the gradients across the perimeters of warm and

cold rings which break off from Gulf Stream meanders.

Figure 3.10 (Fenner, 1978) shows contours of sound speed

along a line from the interior of a warm ring (position M)

lying northwest of the Gulf Stream, through the surrounding

slope water, and into the North wall of the Gulf Stream

(position CH26). The front at the edge of the ring is

indicated by the rising isopleths at a distance of 60 - 80

km from position M.

A thermal frontal zone to the southeast of the

Gulf Stream has been observed (Voorhis and Hersey, 1964).

This area is usually referred to as the Sargasso front or

subtropical convergence zone. Legeckis (1978) presented

satellite IR images showing the meandering nature of the

front. Beckerle (1972) suggested that the motion of the

front could be influenced by westward propagating Rossby

waves.
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Legeckis (1978) in his satellite-based survey

of thermal fronts described several fronts which have

been observed in the Atlantic north of the Gulf Stream.

Figure 3.11 shows the position and shape of the front formed

by the confluence of cold Labrador Current water with the

Gulf Stream. Smaller fronts occur to the north off the

south coast of Greenland and the east coast of Newfound-

land. These fronts, marked by sea surface temperature

gradients of roughly 30C/10 km, may be related to the

extent of ice coverage in winter and spring. Legeckis also

referred to a thermal front southeast of Iceland.

In general, oceanic fronts in the North Atlantic,

with the exception of fronts associated with the Gulf

Stream, have not been studied as systematically as those of

the North Pacific. Satellite Very High Resolution Radio-

meter (VHRR) sea surface temperature measurements have

revealed the presence of several thermal fronts, but persis-

tent cloud cover in many areas, variable temperature grad-

ient intensities, and lack of continuous coverage in some

areas have precluded acquisition of reliable information

about the positions, variability and persistence of most of

them.
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3.3 MODELS OF FRONTS

The purpose of the preceeding descriptions of

frontal zones has not been to provide an exhaustive survey

of frontal zones, but to provide examples of the variety of

open-ocean structures to which thie term front is applied.

This diversity is perhaps a good indicator of the difficul-

ties involved in developing generalized front models. As we

shall see in Section 3.3, the existing numerical front

models are hydrodynamic models which address only density

fronts. Fronts which exhibit only temperature and/or

salinity gradients have not yet been modelled numerically.

Garvine (1979a) separates frontal dynamics into

four categories:

* frontogenesis (formation) and frontolysis

(dissipation)

* hydrography and circulation of established

fronts

* interaction with wave fields

* high-frequency turbulence generated in the

frontal zones.

To date, the little modelling that has been reported has

focussed on the first two categories.

3-18
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3.3.1 A Frontogenesis Model

In the course of his study of North Pacific

fronts, Roden (1977) suggested a set of equations which

might describe the balance of thermohaline forces which lead

to the formation and variability of oceanic fronts. The

equations* for the local time change of the horizontal

mean temperature and salinity gradients are expressed
as

tl g = - (;nVne)IV;1-Vnn1V; ;n z Z

n PC - z s n ( ; ) (3 ,1)

and

3t1VS1 zz

- an ( i P <w's'>)-D (Waz )  (3,2)

Notation for this model is explained in Table 3-2
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TABLE 3-2

Notation for Roden (1975) Front Equations:

e - potential temperature (OK)

S - salinity

Vn,e and Vn, s  velocity components normal (in the

direction of increasing values) to the

temperature (0) and salinity (s) fronts

P - density

Cvs - specific heat of sea water at constant

volume and salinity

w vertical velocity (positive upward)

qz vertical component of radiative heat

flux (positive upward)

rz  - vertical components of nonturbulent

salt flux (positive upward)
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where the overbars indicate mean values and the primes

indicate instantaneous fluctuations. The terms on the right

hand sides of (3.1) and (3.2) describe, in sequence.

the following effects:

9 the velocity convergence in an established

frontal zone,

ithe advection of gradients into a zone,

* non-turbulent fluxes of heat and salt,

* turbulent fluxes of heat and salt, and

I the vertical advection of temperature and

salinity.

Roden (1975) examined the frontal systems of the

North Pacific in light of (3.1) and (3.2) to determine the

relative magnitudes of the forces leading to frontal genera-

tion and maintenance. Vertical advection was not consid-

I ered His data are presented in Table 3-3. These data

indicate the dominance of the velocity convergence (and, by

Iimplication, the wind stress curl) in frontal formation in

most areas. The subtropical frontal zone, and to a lesser

extent the doldrum front zone, relies on a balance between

wind stress and radiative heating/salinity flux.
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TABLE 3-3

Estimated magnitudes of terms in (3.1) and (3.2) from
Roden (1975). The second terms on the right hand sides
of the equations vanish because the gradients at the front
are assumed to have maximum values. Magnitudes are nor-
malized by lxO - 1 2 units.

Terms Kuroshio Subarctic Subtropical Doldrum

Temperature Fronts

-nvnelv I 120 60 30 10

6nC - 6 6 10 -10vs zq z

1
_v n zDC <w'e'>) -2 -2 -5 7- vs v

2tiVeI* 124 64 35 7

Salinity Fronts

-nV nsIV S 2 1 0.5 1n 1s

-3
-n r,- zr z )  0.1 0.1 0.1 0.2

-n(L O < W'5>) 0.1 0.1 0.2 0.3n z

2t VS *  2.2 1.2 0.8 1.5

*Sum of terms above.

3-22



~I

Although his work has provided much information

about frontal regions, Roden has not tried to actually model

frontal behavior, but instead has used his equations as a

predictive tool.

3.3.2 A Steady State Model

Garvine (1974, 1979a, 1979b) reported on a series

of studies of small-scale, steady state oceanic fronts. His

early work (1974) consisted of a two-dimensional hydrody-

namic model of a shallow, small-scale front developed in a

non-rotating ocean by the advection of a shallow pool of

light water into a heavier water mass at rest. This situ-

ation is similar to the river plume front reported by

Garvine and Monk (1974).

Garvine's later studies (1979a,b) extended the

model to include two-dimensional velocities and basin rota-

tion. Thus the extended model is more suitable for discus-

sion in this review.

The configuration of this model is shown in Fig-

ure 3.12. Terms in the figure are defined in the caption.

The model is cast in a coordinate system which moves with

the front, so that the +x direction is normal to the front

and into the light water pool and the +y direction is

parallel to the front. The basic model assumptions are:

e the motion and density distributions near the

front are quasi-steady in time;
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Figure 3.12. Schematic Diagram of Garvine (1979a, b) model param-

eters are:

P" - density of ambient pool

U, - horizontal velocity of ambient pool

Db - depth of light water pool upstream

D(x) - depth of light pool near front

P(z) - density of light pool near front

I - surface height anomaly of light pool

Ax - length scale of front

v - along-front velocity in light pool

VA - along-front velocity

UF - horizontal velocity at surface front
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* the velocity field is locally two-dimensional

in that the length scale for variations along

the front is much larger than that normal to

the front. The velocity components UF and VA

are not functions of y;

the ambient water density is uniform, and

IQ -oI is small;

* the vertical momentum balance is hydrostatic;

* the Coriolis parameter, f, can be held con-

stant over the length scale of the model;

* surface wind stress and atmospheric pressure

are uniform;

* Db is much smaller than the total water depth;

* a balance exists between Coriolis acceleration,

pressure gradient, and wind stresses; andI
* the Boussinesq approximation applies.

I
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If u, v, and w represent the velocity components in the model

coordinate system, and we define

0

U =f udz

-D
0

V =f vdz

-D
0

M xx =f u 2 dz
-D

0

Mxy =f uvdz,
-D

then the vertically integrated model equations can be

expressed as

dxU U w i. + D = qe (3.3)

dxMx -qeui-fV -ygkl0x (rD2 ) + p -(w+ ix) (3.4)

+ h xx

x -f = -ygk-l (rD2 )

-1+ C (,wy +Tiy) + hdxxV
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In these equations, r=As /Pm (where _ is the surface

density anomaly ( s) and 'nm is the maximum density

anomaly ( D-p in parent pool)) and y = __m/2, , k is a

constant characterizing the specified vertical density

profile, the subscript i denotes values at the density

interface between the parent pool and the ambient pool, -w

is the surface wind stress, 7i is the interfacial shear

stress, and qe is the entrainment velocity across the

density interface. We denote

qe E q_ (3.3)

and

Ti = q Cf T (3.7)

where E is the interfacial entrainment coefficient (>0 for

entrainment into ambient pool, <0 for outward), Cf is the

interfacial friction coefficient, _q, is the local bulk

horizontal shear velocity between the water at the interface

and that below, and qT =i T

Nondimensional analysis of the model equations

produced several important scale factors. Two length scales

emerged. The dissipative length scale, Lt = Db!a (a is

the maximum value of E), characterizes the weakening of

the front due to entrainment across the interface. The

second length scale is the baroclinic Rossby deformation

radius. X, = (2 X gDb)i/ 2 /f, which characterizes the depend-

ence of frontal structure on rotation. The nondimensional

Prandtl number, Pr = 2 Lt/X, indicates the relative
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importance of the two terms. Dependent variables in the

model change most rapidly at the scale of the smaller of the

two parameters. Thus Pr>>l implies dominance by intrusive

forces, while Pr<<l implies dominance by rotational forces.

A third important scaling parameter, Ric-the cross-

stream Richardson number - is expressed as

Ri /u = 2 /u 2(38)
C b~c /uCCC

The quantity, C, is the phase speed of internal waves be-

neath the parent pool. Thus Ric characterizes the velocity

of the ambient pool.

A final immportant scale parameter is the normal-

ized Ekman volume transport,

V I ( f)-l/cDb. (3.9)

Application of the model requires specification of

vertical profiles of p, r, u, and v. This indicates that

mixing is not accomplished by the model itself, but is

imposed upon it.

Garvine shows that, by making a number of assump-

tions concerning the relationship between parameters in the
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frontal zone and parameters at x=- , the model equations can

be greatly simplified. Equations (3.3). (3.4), and (3.5),

can ultimately be reduced to two ordinary differential

equations which are solved for Vi and D. The velocity

components ui is calculated from these.

Garvine applied the model to six cases: A stan-

dard test case. a river plume front, the Pacific Equatorial

front. a coastal upwelling front, the subtropical Atlantic

Front, and the Gulf Stream Front. The scaling parameters

for each front are listed in Table 3-4.

* Garvine first applied this model to a case

with the following parameters: Pr = 1.0,

Ri, = 1.0, VE = 0.1. The density profile

was linear from the surface to the interface.

Both rotation and dissipation are important in

this instance.

The resulting frontal zone showed surface con-

vergence on either side of the interface and

sinking along the interface at depth. The

density anomaly field is shown in Figure 3.13.

An intense jet formed along the front, but

with a speed roughly 30% that expected from

geostrophy.

* The comparison between model predictions and

observations (Garvine and Monk, 1974) for a

river plume front was quite good (Figure

3.14).
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Figure 3.13. The field of density anomaly Lc normalized by its
maximum and two vertical profiles of cross stream
velocity for the standard case (Garvine, 1979b).
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Figure 3.14. Comparison of model density (at) and uI profile

with observational data of Garvine and Monk (1974)
for Connecticut River plume front
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Table 3-4

Scaling Parameters Used by Garvine (1979b)

Frontal Type Pr Ric VE

Standard Test 1.0 1.0 0.1

River Plume 0.029 0.6 N/A*

Pacific Equatorial 0.05 1.0 N/A*

Coastal Upwelling 2.8 3.2 0.0

Atlantic Subtropical 3.9 8.0 0.0

Gulf Stream 9.0 100.0 7.0xlO - 4

I
* at very low Pr values, Ekman transports play a relatively

unimportant role in model dynamics.
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" The model density field for the Pacific

Equatorial Front simulation is shown in Figure

3.15. No comparison with observation is

possible until higher spatial resolution

data becomes available, although the predicted

interfacial slope is of the order of magnitude

of the few observations that exist.

" Comparison of the model density field with

observations in an upwelling zone by Stevenson

et. al. (1974) is shown in Figure 3.16, while

comparison of model streamlines and observed

isotherms is shown in Figure 3.17. The model

results agree reasonably well with obser-

vations, except in the region x<O, where

bottom topography rises rapidly and the

assumption Db<<h is less tenable.

* The Atlantic subtropical front is almost

entirely a thermal front, so that, as shown in

Figure 3.18, model isopycnals and observed

isotherms are directly comparable. The model

pycnocline is thicker than the observed (as

denoted by the 21.50 isotherm), but the hori-

zontal extent of the fronts compares well.

* Comparison with observed Gulf Stream frontal

data (see Figure 3.19) is also good. The

along-front transport values predicted (30

Sverdrups = 30 x 106 m3 /s) are reasonable,

and the sea surface height anomaly across the

front (90 cm) agrees well with surface slope

measurements.
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Figure 3.15. Model density anomaly ( a t) field and two u
profiles for conditions representative of the
Pacific equatorial front (Garvine, 1976).
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Figure 3.16. Comparison of model at field with observed
transect of Stevenson et. al (1974) for Oregon
coastal upwelling. A model u profile is shown
as well as the bottom profile (Garvine, 1979b).
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Sea case and the observed isotherms of Voorhis
(1969) (solid lines) (Garvine, 1979b).
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Gulf Stream front case. Dashed line indicates
the 35.5%/ isohaline from the section shown in
Figure 3-9.
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The wide variety of cases to which this model has

been applied indicates its usefulness in studying the

dynamics of established density front systems. It cannot,

however, be used to describe the processes involved in

frontogenesis. That type of study requires a time-dependent

model.

3.3.3 A Time-Dependent Frontal Model

Kao, et al. (1977) developed a time-marching model

to study the frontal system formed when a body of water

flows into an ambient pool of higher density. This is

essentially the case studied by Garvine also. They treated

the situation as an initial boundary value problem and

obtained solutions to their equations by numerical inte-

gration. Their initial study did not include rotation,

while their later work (Kao, et al., 1978) did. We will

concern ourselves with the rotational model.

Consider the flow of a mass of water with density

! and depth Db at a rate Qe into an ambient pool, of

water with density 0 at the bottom (z=O). The ambient

pool is at rest with total depth h. We can use h as a

length scale, U = Qe/h as a velocity scale, and t = d2 /Qe

as a time scale. The model coordinate system does not move

with the front. The +x direction is into the ambient zone,

and z is positive upwards from the bottom.

Define the y-directed (along-front) vorticity,

density difference, and stream function respectively as

= z u - axw (3.10a)

= (P-po)/p o  (3,lOb)

u = z 4' , w = -a 'P. (3.10c)
z x
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Then, in nondimensional form, the equations for an incom-

pressible viscous diffusive flow can be written as

+ 9 (u6) + (w6) = S 1 R -I V- 2 (3.11)
x z c e

r)(U) + a (w-) v = F-2 ; + R -172l (3.12)

2 z o z x e

72 = (3.13)

(UV) + 3z(Wv) + R -lu = R -23.

t + xZ 0 e -

where :2 = + ;zz, Re (Reynolds number)=Uh/ v, F(Froude

number) = U(gh)-l/ 2 , Sc (Schmidt number) = v /D, and Ro

(Rossby number) = U(fh)- . The parameters v and D represent

the kinematic viscosity and diffusivity.

The boundary and surface constraints placed

on the model are as follows:

* No shear or vorticity at the free surface,

* No mass transfer through the side boundaries

at x=O,

" No-slip conditions at the side and bottom,

* u=v=O at the bottom and at the side when

x=O, and

* u=i and w=O for downstream.

The initial conditions for the inflow specify a

potential flow which satisfies -2y= 0 and v = 0 and a

density field such that T(z)=(T(z)-c o)/, where T(z) is the

mean density of the ambient fluid.
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The first test case reported was the intrusion of

a flow into a homogeneous ambient fluid. The front accel-

erated into the ambient fluid and then slowed as the

Coriolis force deflected it parallel to the front. Even-

tually (after a time period of roughly lOf- 1 ) a quasi-

geostrophic balance was established, andthe front became

stationary with respect to the ambient fluid. Cross

sections of various front parameters at equilibrium are

shown in Figure 3.20. The convergence and downwelling at

the front noted by Garvine were present in this simulation.

This form of the model was then applied to Gulf

Stream front data (Fuglister, 1963) with considerable

success. Plots of density deficit (Ct (light inflow) -

ct (upstream)) at various depths in the front are shown in

Figure 3.21. The isopycnal slopes at the front and the

along-front flow predicted by the model agreed well with

observations also.

A third test depicted flow into an ambient pool

with a thermocline-type density structure. The primary

difference between results of this test and those of the

first test was the generation of internal waves at the

thermocline. An example of this is shown in Figure 3.22.

Calculations based on model results showed that the internal

waves were indeed forced by the front and travelled with the

front. This test was conducted with an unrealistically

large Rossby number. Tests with a lower value of Ro also

produced internal waves during the evolution of the front.
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Figure 3-21. Density deficit (Wat) as function of depth for
two Gulf Stream cross-sections (dots) compared
with steady state model predictions (%ao et. al.,
1978).
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This time-dependent model also shows great poten-

tial for studying the evolution and maintenance of oceanic

density fronts. The reader should be aware that neither

this model nor Garvine's can presently be used to model

fronts which do not display density gradients (i.e., temper-

ature and salinity gradients are such that density remains

relatively constant across the zone). The majority of

fronts reported in the literature exhibit density gradients,

however, and the severity of this restriction on model usage

may not be great.

3.4 RELATION OF FRONT MODELS TO OTHER SCALES

Oceanic fronts have not yet received the attention

that large scale circulation patterns and eddies have

received. Thus little speculation has appeared as to the

role of fronts in the wide range of ocean dynamics. We know

that many frontal zones come about as a result of the mean

circulation of both the ocean and the atmosphere.

V4 The relationship of fronts to smaller scales

of motion is also vague. Th results of Kao et al. (1978),

which indicate that moving fronts could generate internal

waves, may provide the link if they are borne out by

observations.

From a modelling perspective, frontal models form

a separate category. The large-scale models cannot resolve

fronts because of the small scales over which horizontal

gradients are strong. Eddy resolving models could produce

fronts, although little mention of this has been made in the

literature.
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Section 4

UPPER-OCEAN MODELS

4.1 INTRODUCTION

The momentum and energy fluxes which drive motion

in the ocean, from the largest current systems to small-

scale internal waves and turbulence, and which maintain the

ocean's thermal characteristics arise, fundamentally, from

fluxes across the air-sea interface. The fluxes result

directly from solar irradiance at the sea surface or from

differences between the air and ocean mechanical and thermal
states. Momentum and kinetic energy are transferred by wind

stress at the sea surface, solar radiation passes through

the interface and is absorbed very near the surface; infra-

red radiation is emitted by the water at the surface; the

occurrence of air-sea temperature differences give rise to

sensible heat transfer in or out of the ocean and evapora-

tive transfer. These are the essential momentum and energy

I transfer processes. They most strongly and directly affect

the upper 1-2% of the ocean, and this layer has in turn a

pronounced effect on them. A sound understanding of the

physics of the upper ocean is therefore fundamental to the

study and analysis of nearly all ocean phenomena. In this

section we will describe one-dimensional upper-ocean

models.

We can define the upper ocean as the depth

interval from the surface which exhibits strong seasonal

variations. These variations are usually most notable in

the local temperature profile of the water column. Typi-

cally the upper-ocean water column consists of a very

4-1
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strongly surface-flux-influenced vertical mixing layer atop

*a seasonal thermocline (see Figure 4-1). The depth of the

mixing layer can vary from a few meters in summer up to

several hundred meters in winter. Except for a very thin

"constant flux" layer about a meter deep at the surface,

conditions in the mixing layer often approach uniformity in

the mean and this layer is usually referred to as the
"mixed layer" (ML), it will be so referred to here.*

Thermal and mechanical energy are transferred vertically in L

the mixed layer by wind-induced turbulent motion, and by
convective motions which arise in cases where the surface

water cools, becomes heavy, and sinks. Large values of

vertical shear are often observed at the mixed-layer base,

and there is evidence (for example, Halpern 1974) that when

strong wind-forced vertical mixing is occurring the mixed

layer responds somewhat like a rigid slab at inertial

frequencies to wind forcing

The seasonal thermocline (ST) is the scene of sig-

nificant internal-wave activity. The vertical fluxes of

heat and salt are usually far smaller than their mixed-layer

values, but momentum fluxes in the form of internal waves

(which do not transport heat or salt) need not be. The ST

internal-wave field may thus provide an important sink for j
mixed-layer momentum (Bell, 1978). Patchy turbulent regions

* Some experimentalists prefer the terms "mixing layer"
or "wind-mixing layer" since they view the existence
of truly mixed layers as rare, although there is some
controversy about this. Modelers generally make the
practical assumption that mixed layers exist.
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FIGURE 4-1: Schematic of major features of the temperature
and velocity structure near the ocean's surface.
The following flux components are indicated:
Rs short-wave radiation; R , long-wave radiation;
R, the component of short-lave radiation absorbed
below the surface; H sensible heat transfer;
H , evaporative heat transfer; T the surface
wnd stress (momentum flux). Thl reflected
components of the short-wave radiation is not
included.
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tend to appear in the ST, and these patches are responsible

for vertical transport of heat, salt and momentum. The (.

patches may be induced by internal-wave instabilities and

double diffusion phenomena. The ST internal-wave field may

respond strongly in turn to meteorological forcing modulated

by the existence of a mixed surface layer (Kise, 1979), and

to forcing induced by mixed-layer turbulence (Bell, 1978).

One-dimensional upper-ocean models are based on

the assumption that over an appropriate averaging time scale

horizontal variations in averaged quantities (such as

temperature, salinity and velocity) may be neglected com-

pared with their vertical variation. Such models are useful I

because, in the absence of distinct fronts or eddies,

quantities which have been averaged over time periods longer

than those characteristic of the local internal-wave field

tend to vary more over a vertical distance (from the

surface) of a hundred meters than over horizontal distances

of tens of kilometers. Under such conditions horizontal

advection is likely to affect local conditions to a much

lesser degree than vertical processes. In general the

validity of the assumption must be considered on a case-by-

case basis. $

We can organize one-dimensional upper-ocean models -.

into two broad classes:

* bulk mixed-layer or I
A. mixing-layer models;

• *:. diffusion or grid-point models.

4-4 F
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Bulk mixed or mixing-layer models, sometimes re-

ferred to as "slab" models, are based on the assumption

that vertical variations in averaged values of temperature,

and salinity and velocity when these quantities are included,

may be neglected within a surface layer in which turbulent

mixing is occurring. The partial differential equations for

heat, salt and momentum conservation can then be reduced to

ordinary differential equations. This uniformity assumption

follows from many observations of vertical profiles of the

sort presented earlier. In these models the upper-ocean

response to surface forcing consists of changes in the depth

of the active-mixing layer and in the temperature (and the

salinity and velocity, if included) of the layer. As the

layer deepens (due to wind mixing, say) it entrains water of

different temperature (and salinity and velocity) and

conditions within the layer are adjusted to satisfy conser-

vation requirements. For example, as the layer deepens it

may entrain cooler water and the net effect will be a

slightly cooler, but still uniform, layer temperature. As

the layer of active mixing recedes due to strong heating, it

leaves behind non-turbulent water at each depth at the

temperature (and salinity and velocity) of the layer when

its base was at that depth.

In general, the treatment of the seasonal thermo-

cline assumed in bulk upper-ocean models is trival: condi-

tions at a fixed depth can vary only when that depth is

within the mixed-layer. Some exceptions are the treatments

proposed by Denman (1973) in which solar radiation is

included and Niiler (1977) which includes some turbulent

transport within the seasonal thermocline.1~ 4-I5
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Diffusion models do not require a uniform mixed-

layer assumption, and partial differential equations for

temperature and velocity (and in at least one case, salin-

ity) as a function of time and depth are solved numerically

by a finite-difference grid-point approach. Turbulent

transport is parameterized by a buoyancy-influenced eddy

viscosity coefficient, and the distinction between the

mixed-layer and seasonal thermocline is not required; that

*".I is, the existence of a mixed-layer is not imposed a priori

but can be used to verify the model parameterization.

A . In the following sections we will examine models

based on each of thse approaches and describe results

obtained using them.

4.2 ONE-DIMENSIONAL CONSERVATION EQUATIONS

The equations for the conservation of heat, salt

and momentum form the basis for all one-dimensional upper-

ocean models. In this section we will present the equations.

We will also present an equation of state, a buoyancy equa-

ij tion, a one-dimensional turbulence kinetic energy equation

4 which we will use in our description of bulk and diffusion -

models, and ocean-surface flux boundary conditions.

4.2.1 One-Dimensional Heat, Salt and Momemtum Equations ,.

To derive the one-dimensional upper-ocean equations Ii
we assume that:

4
I
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9 horizontal variations of quantities from their
averaged (ensemble or Reynolds averaged*)
values are negligible;

e the effects of density variations can be
ignored except as they give rise to buoyancy
forces;

9 the effects of molecular diffusion of heat,
salt and momentum on the local conservation of
those quantities are negligible;

* the averaged vertical momentum equation is ade-
quately represented by the hydrostatic balance
equation.

Under these constraints the conservation of heat, salt and

momentum are described by

arT + azq= -(prc) azR p  (4.1a)

atS + az 0
(4.b)

and

at! + k x fu + az = 0 (4.1c)

* I
* In experimental work Reynolds averaging is taken to mean
time averaging over time scales which are long compared to
the scales associated with small scale motion (an individual
stirring/mixing event, say), but short compared to larger
scale motion (inertial oscillations, for example). For the
gross mixed-layer dynamics typical averaging times are on
the order of an hour. The equivalency of the two forms of
averaging is addressed by the ergodic hypothesis.
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We define the variables in (4.1) as follows:

T the averaged water temperature;

S the averaged salinity;

U the averaged horizontal current vector with

components (u,v) in the East and North directions

respectively;

f e Coriolis parameter 2 2sin ¢ (where 2, is the

earth's angular velocity and ¢ is latitude):

P r a representative water density;

c the constant-volume specific beat of sea water;

Rp the component of solar (direct and diffuse)

radiation which penetrates the ocean surface;

z the ooerdinate describing vertical distance

(p,.sitive upward);

k a unit vector in the z direction;

t time.

We define the turbulent fluxes of heat, salt and momentum

q, y and T as

q = w'T' , (4.2a)

M w'S' , (4.2b)
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and r= w'', (4.2c)

where primes represent the instantaneous deviation from the

mean, and w is the vertical velocity. The notation Y

represents the average of the quantity x, and by definition

U= W'= S' = T' = 0

For convenience we use the over-bar notation only as neces-

sary, and we have defined our averaged variables such

that

T T, etc.

Equations (4.1) form the basis for all one-dimen-

sional upper-ocean models. In some formulations the pene-

trative radiation Rp is not included in the heat equation

as a distributed source but is treated only as a surface

flux. In some parts of the ocean this approximation may be

reasonable; in certain areas, however, significant percent-

ages of the total solar irradiance penetrate to depths of 10

- 20 m. As perhaps an extreme example, the irradiance at

depths of 10 and 25 m in clear water (Sargasso or Caribbean

Sea) can be as large at 20 and 13%, respectively, of the

surface direct solar and diffuse radiation with the sun at

900 altitude (Jerlov, 1976). Energy deposited at these

depths may significantly affect the near surface thermal

structure.

In many problems the primary variable of interest

4, is temperature and the assumption is often made that the
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effects on water buoyancy of variations in salinity can be

neglected. The mixed-layer model of Price et al. (1978),

the diffusion model of Kondo et al. (1979), and an SAI-

developed version of the Mellor and Durbin (1975) model,

however include equations for the salinity.

In many instances the horizontal upper-ocean

current field is of interest in its own right, however,

there are many situations such as heat budget studies in

which predictions of momentum may not be particularly de-

sired. The necessity for the inclusion of an averaged

momentum equation in this kind of study is directly related

* to fundamental questions about the nature of turbulent

mixing and entrainment. There are two basic schools of

thought on this issue. Kraus and Turner (1967) and Turner

(1969) argued that wind-inauced vertical mixing and entrain-

ment may be related to mixed-layer turbulence somehow gen-

*erated by the surface wind stress, and that the mean-momen-

tum equation was irrelevant. The assumption implicit here

is that near-surface shear can be adequately expressed

in terms of the friction velocity (Is/Q 0
I ) divided by a

surface shear layer length scale. This approach has been

followed by Denman (1973), Kim (1976), and others, mostly on

. i the basis of apparent predictive success, laboratory data,

and conveni.ence. On the other hand, Pollard, et al. (1973)

and Price et al. (1978) argued that wind-induced mixed-layer

deepening Ls dominated by the generation of turbulence at

the base of the mixed layer. The large turbulence gener-

ation rates result from large vertical shears across the

mixed-layer base. Price (1979) suggests that the laboratory

experiments have actually been misinterpreted. Under this

latter hypothesis the mixing-layer momentum equation is

4-10Io I
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crucial since it yields a prediction for the change in mean

velocity across the layer base.

Diffusion models are not based on an assumption

regarding the source of turbulence responsible for layer

deepening except that turbulence resulting from surface wave

breaking is not included. The simplest of these models

parameterize vertical mixing in terms of local gradient

Richardson number, while the more complex estimate fluxes

from prediction of the turbulence kinetic energy or predict

the fluxes directly. In all cases vertical shear is a major

factor in the flux prediction.

4.2.2 One-Dimensional Buoyancy Equation

The temperature and salinity are related to the

water density by an equation of state; formally,

p = p(S,T,p).

For most upper-ocean modeling purposes it is sufficient to

ignore the rather weak pressure effect, and all models

make use of a linearized equation of state:

p U Pr[1-a(T-T r) + B(S-Sr)] (4.3)

where Tr and Sr are the reference temperature and salin-

ity corresponding to Pr. The coefficients a and 2 are

defined by

.I I
a _Pr 0 P)
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and

- sp

and have positive values.

We define the "buoyancy" in the usual way

"I! (Phillips, 1977) as

A

b r(4.4a)

and from (4.3)

b = g[a(T-Tr) _ 8(S-S )] (4.4b)
r r

The linearized equation of state enables us to

combine (4.1a) and (4.1b) for a single buoyancy conservation

equation which can be used in place of one of those equa-

tions. The variation of buoyancy and not temperature and

salinity individually is a key element in mixed-layer

dynamics. We multiply (4.1a) by g a and (4.1b) by g and

add to obtain

a tb + azn - -a ZIp (4.5a)

where b is defined in (4.4b) and r is the turbulence flux .

of buoyancy given by

n w'b' - g(aq-Oy). (4.5b)

4-12
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We have defined

Ip(z) g RL (z) (4.5c)

for convenience.

4.2.3 The One-Dimensional Turbulence

Kinetic-Enevtgy Equation

Nearly all upper-ocean models rely on the turbu-

lence kinetic-energy (TKE) equation to provide a closure

scheme. In bulk models the TKE budget is used to determine

conditions under which sufficient mechanical energy is

generated to keep the layer well-mixed. A good example of

such an application is given by Niiler and Kraus (1977).

The diffusion models of Mellor and Durbin (1975) and Marchuk

et al. A1977) also make use of the turbulence kinetic

energy equation to parameterize vertical mixing.

Under the horizontal homogeneity assumption

described earlier, we can write the TKE (see Phillips, 1977)

equation as

a tk2  " - U= + n-a {-'w(k +,pr ') - (4.6a)

j where k2 is the turbulence kinetic energy,

k2  1 2, 2 2

k (u' +v' w' ).(4.6b)

I
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The first term on the right side of (4.6a) repre-

sents the production of TKE by the interaction of turbulence

with the mean shear; the second, the conversion of potential|

energy to TKE; the third, vertical turbulent transport of

TKE and work done by the turbulence against fluctuations in

pressure about its hydrostatic value; and fourth the dissi-

pation of TKE by viscosity.

4.2.4 The Parameterization of Surface Fluxes

The parameterizat ions of surface fluxes of heat,

salt and momentum are essentially independent of the details

of the particular mixed-layer or diffusion model which

. we might wish to apply. We let a subscript "o" represent

the value of a flux or variable at the surface, and note

that, in our coordinate system with z-positive upward,

fluxes are positive out of the surface. Then

qo (Poc) - [Ri+He+Hs ] , (4.7a)

o (P-E) So, (4.7b)

and4

-1
TO -Cr Ts (4.7c) i

where I
T s is the stress applied by the wind on the surface

(or the momentum flux into the surface),

4-14
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R 1 is the net infra-red heat flux out of the

surface,

He is the evaporative heat flux,

Hs is the sensible heat flux,

E, P are evaporation and precipitation rates,

respectively.

The surface buoyancy flux is just

= g(aq 0 -Byo). (4.7d)

The fluxes -s, He, Hs and E are usually parameter-

ized adequately with bulk formulas. These have been studied

by many investigators (e.g., Friehe and Schmitt, 1976).

Essentially they all have forms similar to

Hs -CsPal a ICp(ToTa),

H e AE,e e

E - CEPala (r a-r )

and

where subscript "a" refers to conditions in the air at

some reference height (typically 10 meters), CD, CS and Ce

are generalized flux coefficients, Ae is the latent heat

4
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of evaporation of sea water, r is the specific humidity,

and ro* is the saturation specific humidity at the sea-

surface temperature. We will not describe these expres-

sions further in this document.

The quantity R1 is the net flux of thermal

infra-red radiation. It is comprised of energy emitted from

the ocean surface and from the water vapor in the atmosphere

(positive and negative energy fluxes in our coordinate

system).
The penetrating short wave radiation, Rp, which

includes both direct scar radiation as well as diffuse sky

radiation, has been re ,resented in (4.1) as a distributed

source; it is absorbed %.. a very significant extent in the

upper 0 to 20 meters. Rp(z) is usually represented for

most upper-ocean modetIg purposes by a decaying exponential

(e.g., Denman, 1973, Price, et al., 1978). A general

formulation is[

R (z) -E R exp (Kiz) (4.8) 1
in which we assume that the penetrating radiation may be

represented in spectral bands with an exponential attenua-

i tion coefficient, Ki, for each band. A convenient expres-

sion of this sort which includes water turbidity effects is

given by Kondo, et al. (1979).

4.3 BULK MIXING-LAYER MODELS

One-dimensional bulk mixing-layer models are

based on the assumption that a mixed-layer exists in which

vertical variations in averaged values of temperature, and

salinity and velocity when these quantities are included,

4-16
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may be neglected. The archetype model is that due to Kraus

and Turner (1967). Their work was refined and expanded upon

by numerous investigators including Denman (1973), Pollard,

Rhines and Thompson (1973), Kim (1976), Niiler (1975, 1977),

Niiler and Kraus (1977), Garwood (1977), Price et al.

(1978), and others.

4.3.1 Buoyan~cySaliaitY and Momentum Conservation

in the Mixing-Layer

We assume a ML of depth h such that within it the

average values T, S, b, and -u do not vary vertically and

have the values Tm, Sm bm, and um. We do not assume

that the total instantaneous temperature, salinity, buoyancy

and velocity are uniform, just their average values; as long

as vertical transport is taking place there must be vertical

variation. It is important to recognize that this assump-

tion of uniform averaged ML values is not based directly on

fundamental physical principles but strictly upon observa-

tion. In ML models the vertical structure is forced upon

the solutions of the dynamic equations, and it places

significant (and to some degree artificial) constraints on
those solutions.

With the uniformity assumption described above we

can integrate (2.1) and (2.5) across the ML to obtain the ML

equations:

b "tbi - n'±._) 1-h (4.9a)

I : hdtSm Y - (4.9b)

.- 4-17
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and

-h(dtu +k xtu) (4.9c)

and for reference .

Pilb ,.hdtTm ffi-[q+(Pe)IRp]J
_  (4.9d)

where

lbx x(b) -x(a).

I 
a

Equations (4.9) relate the temporal rates of

change of b, S, u and T in the layer to the fluxes of those
4 quantities across the layer surface and base. There are a
A total of (10) unknowns (including h) in the above system.

The penetrating solar radiation R is assumed known in

terms of the solar flux at the surface and the water absorp-

tivity.

The assumption of uniform b, S, and u across the
ML places constraints on the behavior of n, y and T in the
layer which are worth noting. Equations (4.9) require that

for b, S, and _v to be independent of z; Y and T must be

linear in z as must the combination r) + Ip* These depen-

dencies can be expressed j
n(z) = n + I0 + z (n+Ip){ (4.1On)

z -h

y(z) - Y + z Y (4.10b) I

and 10
-0 h 1-h (4.10c)
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4.3.2 Mixing-Layer Base Fluxes

While the mixing-layer deepens it entrains water

of different buoyancy, salinity and momentum. This water

must mix rapidly and uniformly throughout the layer through

the action of turbulence in such a way that the buoyancy,

salinity and momentum of the whole water column are con-

served. This mixing requirement determines the values which

the turbulence fluxes must have at the mixed-layer base to

support a given rate of mixing-layer deepening. When the

mixing-layer shallows there is no turbulence flux since no

entrainment occurs and the fluid does not "unmix." The

water is left behind with the temperature, salinity and

velocity of the mixing layer at the time of recession.

Since the mixing layer may subsequently deepen during a

simulation these values are stored at a vertical array of

grid points.

To obtain expressions for the turbulent fluxes

at the mixing-layer base when the layer is deepening, we

integrate (4.5a) and (4.lb-c) across the ML/ST interface.

We assume that the interface is of thickness 6<<h; the

integration does not require specification of b, S and u for

a sufficiently thin interfacial layer. We also assume that

turbulence fluxes of buoyancy and salt below the interface

can be neglected. We define

Ab H b -b(-h-6),

the jump in buoyancy across the interface and find

n -h n(-b) (dth)Ab, (4.11a)

h  - (dth)AS, (4.11b)
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and

1b =-(d h)A6_. (4.1 c)

We can generalize (4.11) to include the case of layer shal-

lowing by writing

= -A A b dth, (4.12a)

= A AS dth, (4.12b)

and

L h -A Av dth, (4.12c)

where the Heaviside function is defined as

A = 1 for dth>O (deepening),

and

A= 0 for dth<0 (shallowing). (4.12d)

4.3.3 The Turbulence Kinetic Energy Budget

4 Equations (4.7), (4.9) and (4.12) comprise a set

of (9) equations for the ten problem variables

0 m' bm, Sm' -o 0 0 o' Ih' "h' "h' h.

An additional constraint is required to close the system.

Two basic approaches to closure have been proposed. These

have been based on the mixing-layer turbulence kinetic

energy budget, and on a mixed-layer mean energy budget. The
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former approach has been incorporated in nearly all mixing-

layer models, while the latter was proposed by Pollard, et

al. (1973). Niiler (1975) argued that the mean energy

budget approach was logically inconsistent, but he showed

that the essence of the Pollard et al. closure scheme could

be obtained through consideration of the turbulence kinetic

energy budget. We will consider the turbulence kinetic

energy budget approach only in this report.

The integral of the TKE equation across the mixing

layer and ML/ST interface (that is, the region over which

TKE can exist) may be written as

0
t k 2dz G D CP (4.13a)

-h-6

where 0 0

zG = - [ . " dz w'(k 2 + pr ) (4.13b)
-h-6 -h-6

represents the total rate of production of TKE by shear and

the flux of TKE across the surface and ML/ST interface,

0

D= f cdz (4.13c)
~-h-6

represents the total rate of viscous dissipation of TKE, and

0

I
h(n - I(zh) i dz (4.13d)

-h
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represents the rate at which kinetic energy is lost to

potential energy. The first term on the right (in 4.13d)

represents the rate at which turbulent motions perform work

as they uniformly distribute the change in mixing-layer

buoyancy caused by the surface and ML/ST interface fluxes.

Since fluxes are defined positive upward Th0 appears with

a negative sign to represent the flux into the layer. When

0>O, buoyancy is lost from the layer and potential energy

is converted to kinetic energy. The integral on the right

of (4.13d) is the integro-differential counterpart of

surface and ML/ST interface flux mixing for an internally

distributed buoyancy source.

To conclude this section, we let

0
;!<k 2> f 2

h Jk dz
-b

be the geometric mean of the turbulence kinetic energy. We

can write

20

dt(h <k G - D + h(no+n) + (z+.h) a I dz (4.14)
::w -h

which relates the rate of change of total mixed layer kine-
(U

tic energy to the energy generation and dissipation rates,

and to the rate of conversion to potential energy. We

have assumed that k2 (-h-&) = 0, and have neglected the

contribution to the mean TKE from the interval -h>z>-h-6.

4.3.4 Specific Bulk Models

In the previous sections we mentioned the applica-

tion of the turbulence kinetic energy budget to the closure
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of the bulk model equations. In this section specific

models will be described. The essential difference between

most of the models arise from their treatments of G, D and

to a lesser extent dt(h<k 2 >). Nearly all of the models

neglect dt(h<k 2 >), which is assumed to be small compared

with JhLbdth and G-D. For these so-called "quasi-steady"

models
0

2h Lb A d h G -D + J(z+. h) a I dz + .1h nop (4.15a)t f: 2= p 2
-h

and

0

r dPE G D + z azI dz (4.15b)

-D

This is, of course, a stratified flow approximation appro-

E 1  priate as long as

h~b >><k 2 >• (4.15c)

This strong stratification app: ximation fails in two

regimes. During the very early stage of the response of an

initially stratified ocean to wind, h will be small and hLb

will be small compared with <k2 >, which scales like u, •

Under typical conditions this stage has a time scale of

about one minute and as a result is not significant in a

description of overall response. The second regime may

occur at the end of the annual ocean cooling period. In

this case Ab can vanish; however, the mixing layer stops

deepening, so that the TKE equation should become that for

equilibrium turbulence in homogeneous fluid

G- D =0
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Parameterizations of G and D in terms of the

applied wind stress and friction velocity have been used in |

many bulk models. As pointed out earlier, the mean momentum

equation is irrelevant under these circumstances. Such 17
parameterizations, however, do not predict equilibrium (that 1"
is G-D = 0). The value of G-D is independent of the mixing-

layer depth in several of the models. This lack of an

equilibrium state can have drastic implications. Equation

(4.15a) requires non-zero nh if G-D 0 in the absence of

heating; if Lb - 0 at the end of the cooling season dtn-=,

and the mixing-layer can become infinitely deep. Also

* !(4.15b) requires a non-zero rate of change of potential

energy--an impossibility in a homogeneous fluid. Also

(4.15a) does not predict a steady state solution to the case

of wind deepening of a stratified ocean with no surface heat

flux if G-D does not vanish. The layer will deepen as long

as the wind stress is applied.

As will be described below, the singular behavior

of quasi-steady models can be avoided if a so-called "back-

ground dissipation" is introduced. The background dissipa-

tion, Db, provides a mechanism by which G-D can approach

zero. Then D is written
4'

D = D + Db

where D is the dissipation of wind generated, ML/ST

interface shear-generated, and/or convectively generated

turbulence, and Db is unrelated to any of these generation

processes. In the gross parameterization models of Kim

(1976) and Niller (1977) Db is simply set to Cm h where

* %m is an imposed background dissipation rate per unit

volume.
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The Kraus-Turner Model

Kraus and Turner (1967) proposed the first bulk

model (henceforth referred to as KT) capable of addressing

the time evolution of the mixing-layer/seasonal thermocline

system. Their model did not include mean velocity since

their interest was primarily thermal structure and their

parameterizations of G and D did not require it. Nor did

their model include TKE storage. They were first to

propose use of the TKE budget to close the model system,

and they assumed that the turbulence generation rate could

be estimated as

Pr G = IrJ U = Pru (4.16a)

when as before U. , the friction velocity.

Equation (4.16a) is a representation of the rate of working

of the surface stress Ts, which is constant across the

interface on the water which has characteristic velocity u*.

This parameterization ignores the generation of TKE by the

interaction of turbulence with shear across the mixing-layer

base, and it does not account for the mean velocity of the

!- layer, which can be much greater than v*. Kraus and Turner

simply set

D = 0. (4.16b)

Kraus and Turner demonstrated that the model could

qualitatively reproduce major features of the seasonal mix-

ing layer cycle including spring time shallowing to a mini-

I mum depth about the summer solstice, continued temperature

increase but slow deepening after the solstice, and at first

slow then rapid deepening and cooling with the approach of

the winter solstice (see Figure 4-2).
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(b) and surface temperature (c) as functions of

j time calculated from a Kraus-Turner model for a-
• - sawtooth beating-cooling function (a) and a

4 fixed rate of mechanical mixing. Curves (iW|
are based on the original energy conserving|
assumption of Kraus and Turner; (ii) on the

assumption that no penetrative convection
occurs; (iii) on the inclusion of entrainment
due to cN eio n alone (no wind mixing); (iv)

on the inclusion of entrainment due to mechan-
ical stirring alone (from Turner, 1973).
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Denman included in his version of the KT model the absorp-

tion of solar radiation below the mixing layer.

Whereas Kraus and Turner developed the KT model

with the intent of explaining seasonal-scale variations,

Denman and Miyake (1973) applied Denman's (1973) version to

the simulation of oceanographic conditions observed at Ocean

Weather Station Papa in the North Pacific in June 1970.

Meteorological observations performed at the station were

used as the temperature (buoyancy) initial condition.

Figures 4.3a and 4.3b present the surface meteorological

conditions, measured oceanic response, and model predicted

response. Predicted sea-surface temperatures and mixing

layer depths are in reasonable agreement with the observa-

tions. An interesting feature of the observations and the

predictions is the appearance of new shallow mixed layers

superposed on deeper already existing mixed layers. The

generation of new shallow layers effectively insulates the

deeper thermal structure since most mixing activity occurs

in the new layers. As the figure shows, each of the new

layers eventually mixed down and replaced the existing

structure. Differences between the observations and predic-

tions in vertical profile details may result from internal-

wave activity, the internal tide, horizontal advection, or,

as likely, difficulties associated with the model parameter-

izations.

The Pollard - Rhines - Thompson Model

Pollard, Rhines and Thompson (1973) proposed a

model (PRT) for the occurrence of deepening based on a very
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different approach. They defined a mixing-layer Froude

number (originally a kind of bulk Richardson number F- 1 )

F- Au/hb

and they argued that while h is deepening

F - 1,

and that deepening would not occur if F<1. In this model

the mean momentum of the mixing layer must be calculated as

part of the solution, as distinct from the earlier KT

models. This model yields, however, a simple analytic

* solution for the response of an initially linearly strat-

ified ocean to the onset of a constant wind stress. The

* mixing layer should deepen for the first half inertial

period as

h - u*[4(1 - cos ft)/f 2 N2 /4. (4.20a)

At t = /f the layer should stop deepening and a maximum

depth

" hmax = 8 1*(fN) (4.20b)

should be attained. No further deepening should occur since

the Froude number will never again become greater than one.

Pollard et al. generalized their results to the case of an

arbitrary (stable) initial buoyancy profile bo(z). They

found

1 2-JhflbO - h -z 4 uf-2 (4.21)
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For small times the PRT solution (4.30a) can be approximated

as

I h = 21i4 3*(t/N)I2.

Pollard et al. argued that the tl/dependence proposed by Kato

and Phillips (1969) could as easily be interpreted as a t

dependence.

Niiler's Synthesis

Niiler (1975) attempted to reconcile the KT and

PRT approaches. He assumed that
4

G = Gs + Gi  (4.22)

where Gs and Gi represent the rate of TKE generation due

to processes occurring at the surface and at the ML/ST

interface respectively. We have

G B-. ! * z( - +(k 1PI) (4.23a)
r

and -h dz + [_ )]

T e 4rG, -- f I - 2+Q1Pd)wh .r(4.23b)

-h-6

These equations can, with suitable assumptions, be reduced

I to

G - m 0 [ 2 I (k -+or, )] - 2 • (4.24)

Niller then applied the KT parameterization to the sur-

face processes so that

Gs - Ds - mo u*3,
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where Ds refers to the dissipation of near-surface gener-

ated TKE. He assumed that none of the interface-generated

TKE was dissipated so that

G-D =G s + Gi -Ds,

or
G-D = mo U, "h * (4.25)

This can be used to obtain the entrainment rate equation

A (hb-L0) d h = m U J(z + h)aI dz (4.26)t 0 + fhb .D dt h  I moZ + hn °
4:h 1 2

If the surface generation rate movu3  is ignored and if -

heat/cooling are neglected the right side of (4.24) becomes

zero and b is determined from

LU * Au/hb = 1,

precisely the criterion of PRT. Therefore, the PRT model

may be considered as a limiting-case bulk model based

on the TKE budget.

Niiler examined two classes of solutions to (4.26). He

found that for the case of an initially linearly stratified

ocean, the response to the onset of a constant wind stress

in the absence of heating and cooling was given by

h = (12mo)1/3 (u2I 2)1/2 (Nt)1/3 + O(Nt) (4.27)
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for an initial time period O<t <N-1 <f-1 for arbitrarily

small mo . Therefore, the PRT solution which is valid for

mo equal zero is a singular special case inappropriate for

mo  0, however small.

Niiler described mixing-layer deepening as a three

phase process if ho<h*, where b* = 2v*(Nf) and ho is the

initial layer depth. Initially surface-produced turbulence

is dominant as indicated by (4.27). After about a pendulum

hour, however, ML/ST interface shear becomes important and

the layer deepens to h* within a half-pendulum day. Then,

since the interface shear will never be as large as during

the first half-pendulum day, surface generated turbulence

once again becomes dominant. If ho>h*, on the other

hand, Gs will be dominant and interfacially generated TKE

can be neglected. Niiler then explained the rather slow

thermocline erosion process observed by Denman and Miyake as

a case in which ho>h*. He explained the rapid deepening

observations of Stommel et al. (1969) as a case in which

ho<h*, so that interfacially generated TKE was important.

Surface processes could be responsible for the observed very

rapid deepening rates only with an unreasonably large value

of mo.

A problem pointed out in passing by Niiler (1975)

but well known previously with the KT-type model is that the

parameterizations of G and D and the neglect of TKE storage

lead to ever increasing potential energy since

Pr dtPE=G-D (4.28)
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if solar radiation is treated as a surface flux. The KT

model predicts, in fact, that the mixing layer bezomes

infinitely deep at the end of the cooling season (as long

as U ,# 0) in the absence of an imposed deep thermocline.

As was pointed out by Niiler this non-physical situation

appears in cyclic simulations with an initially-imposed deep

permanent thermocline as a slow cycle-to-cycle increase in

the layer depth at any fixed phase.

Exponential Energy Decay

The infinite deepening problem was briefly

*addressed by Elsberry, Fraim and Trapnell (1976) in a model

(EFT) for the response of the upper ocean to a hurricane.

They proposed that

G-D = G* exp (-b/Z) (4.29)

where G* = u43 and Z is a scale length on the order of

100 m. They argued that this would prevent the infinite

deepening problem. No physical arguments were presented for

the form. When h is small G-D z G, and G-D is equal to

*: L the downward transfer of turbulent energy by wind stress.

As h becomes large, G-D approaches zero so that less

energy is available for layer deepening as h becomes large.

G-D goes to zero only as h-. , however, and infinite deepen- 7

ing will still result. Gill and Trefethen (1977) proposed a

similar formulation.

Gill and Turner Convective Dissipation

Gill and Turner (1976) addressed the simulation of

oceanic seasonal cycles. They showed that the potential j
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energy, heat content and surface temperature would have a

cyclic behavior if all or some portion of the potential

energy which is released during cooling periods were dis-

sipated, rather than converted to kinetic energy and used to

deepen the layer. Potential energy is released when the net

buoyancy flux becomes positive so that

BO 0( +I )>0 (4.30)Bo (o pc 4.0

where the layer is assumed to be so deep that Iph can be

neglected. If we assume that the portion of this energy

which is converted to TKE and remains, after dissipation,

available to bring about further entrainment is a fraction n

of the flux 2hBo, we must require a dissipation rate

Dc 4 h(1-n) (B0 + IBo), (4.31)

so that during warming periods Bo<0 and Dc=O, while during

cooling periods Dc h(l- B o .

When n=O all of the potential energy released dur-

ing cooling periods is dissipated and no kinetic energy

remains to deepen the layer. This is referred to as

4 non-penetrative convection. If n=1 no energy is dissipated,

and the mixing layer deepens sufficiently that all of the

released potential energy is used in deepening the layer. If

O<n<l some portion of the energy is dissipated. This is

referred to as partially penetrative convection. Gill and

Turner (1976) were able to obtain agreement with the sea-

sonal cycle potential energy, heat content and surface

4
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temperature recorded at Ocean Weather Station Echo with n =

0.15, although the results with n 0.0 were apparently

little different. The observed cycle and model predictions

are presented in Figure 4-4. In particular they showed that

the combination of wind-induced mixing and dissipation of

turbulence arising from convective events could reproduce

the observed hysteresis of the water column energy budgets.

Kim's Energy Storage/Background
Dissipation Model

Kim (1976) proposed a rather more complex version

of the KT model (which we will refer to as KIM) which

included a parameterization of TKE storage, and added a

background dissipation rate. The latter of these features

is sufficient to prevent infinite-deepening, although

Kim did not address this issue.

Kim argued that the largest contribution to the

rate of change of TKE would come from the first term in the

chain rule expansion.

dt(h<k 2 >) = dth<k 2 > + hdt<k2>

The first term represents the rate of increase in TKE due to

layer deepening. Kim let icm 2 represent a typical value

of k2 >.

Following KT-tradition, Kim proposed

G= n0U*, (4.32a)

but

D = mdu* 3 + emh, (4.32b)
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FIGURE 4-4: (a) Curves of H* vs P* and H* vs Ts for the
KT model and two variations. The solid lines
with H* increasing shows the identical results
for all three versions. The original model pro-
duces (i) for decreasing H*. The model with
ncn-penetrative convection and no wind stirring
produces (ii), while the model with both non-
penetrative convection and wind stirring produces
the solid line. Time marks are drawn at one month
intervals. (b) H* vs P* and H* vs T
observed over the course of a year at OWS Echo
(350N, 480W).I
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so that the KT dissipation is augmented by a contant back-

ground dissipation rate Em (per unit depth). The values

mo and m d were chosen so that mo - m d is in agreement with

Kato-Phillips observations (mo-md = 1.25).

The entrainment rate equation for Kim's model can

be written as

0
1 2

c- 2 (!+R) d h = G-D + (z+ h) zIp dz + . h

-h (4.33a)

where

R 1, hLb/c 2  (4.33b)

We note here that (4.33b) can be written

SR = R 2 /<k 2>.

where R was defined as hLb/u 2 Then since u *2 is of

the same order of magnitude as <k 2 >, the strong and weak

stratification conditions can be written as R >>1 and R <<1,

respectively.

4 We can also derive

-1 CP+-
Pr dtPE _R (G-D) + 2h + f I z. (4.34)r+R 1+R D •

Equation (4.34) states that the rate of increase of poten-

tial energy is equal to some fraction R(1+R) - l of the

conversion of kinetic energy to potential energy which

results when the surface buoyancy flux and the internally

absorbed buoyancy flux are mixed in the layer, plus the

increase due to the increase in water column buoyancy due to

internal solar absorption.
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t. To obtain an estimate for cm2 Kim considered the

case of no heating and no background dissipation so that

(4.33a) be written in Kato-Phillips (1969) form as

* dth/u* = 2.5 [(cm/12*) 2 + R ]1- (4.35)

If R <<(cm/U,*) 2 as in a homogenous fluid, (4.35) yields

iidth/u = 2.5(u, /Cm) 2 .  (4.36)

Kim made use of homogeneous flow results of Lundgren

and Wang (1973) who apparently found dth/U,* 0.25 so that
(cm/-u) 2 = 9. Kim argued that this result should be

appropriate for all but very small values of u* (when 3-u

might be too small to be a reasonable scale.) He therefore

set

4 cm = max (3 cms-1 , 3v*) (4.37)

with an arbitrarily chosen lower bound.

Kim compared predictions of this model with those

of Denman and Miyake (1973) for the Ocean Weather Station

Papa data. He reported good agreement with the earlier pre-

dictions, and suggested that this must be due to the fact

that during periods of weak heating and cooling R remained

much larger than one so that the contribution to the TKE

budget of Jcm2 dth is small, and that during periods of

strong heating the meteorological data are too widely spaced

in time to allow model differences to be observed (note that

R-0 during shallowing).I
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The use of a background dissipation apparently

independent of the physical mechanisms responsible for the 1
turbulence is an ad hoc approach to improved predictions.

As was subsequently shown by Garwood (1977) and Stevenson

(1979), but apparently unknown to Kim, an imposed background

dissipation can guarantee finite mixing layer depths under

the quasi-steady approximation.

Garwood's Bulk Second-Order Closure

Garwood (1977) was first to show that background I
*dissipation would produce a stable (no infinite deepening)

model, under the quasi-steady approximation and his model

is in some sense a logical step beyond Kim's. The outlines

of Garwood's model were described earlier. He proposed that

the mixing-layer base buoyancy flux should be explicitly

related to the level of vertical velocity fluctuations, and

he proposed that the ratio of the ML/ST interface buoyancy

flux to the convergence of the TKE energy flux have a fixed

value m4. Then he derived the relationship

rh = m 4 <w
7"2 > <k 2 >/h. (4.38)

where <w'2 > and <k2 > are obtained by integrating parameter-

ized differential equations for u' 2 , v' 2 , and w'2 across

the mixed layer.

Garwood followed Niiler's earlier treatment of TKE

generation, namely

Gm0 v 3  1 A (4.39) L
and he derived a parameterization of the rate of TKE 04
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dissipation from an argument (nearly always applied in

second-order turbulence closure theory) that the per unit

volume rate of energy transfer to smaller scales (and hence

dissipation) can be estimated by AV 2 /T where A is an 0(0)

constant, j'2 is the velocity scale of the largest eddies,

and r is the time scale of the largest eddies (see for
discussion Tennekes and Lumley, 1972). The dissipation

occurs at small scales at which the turbulence is assumed to

be isotropic. Garwood suggested that there might be two

important time scales in the oceanic boundary layer. Scale

TI is given by the mixing layer depth divided by the

velocity scale <k2> , and T2 is given by f-1, the rota-

tional time scale which Garwood argued could be impor-

tant for deep mixing layers. He combined these scales on an
ad hoc basis into a single time scale which was defined

by -I -i - 1/2 h-1
-1 + -1 = <k 2> h + f (4.40)

so that T-T 1 for shallow layers. Then

cc <k 2> T-1

and from the definition of D (4.6c)

D = mE <k2> + mf fh <k2>, (4.41)

so that the dissipation which would have been derived on the

basis of a single time scale is enhanced by a contribution

linearly proportional to h in a manner somewhat similar to

that proposed by Kim. The dissipation rate is not assumed

proportional to the rate of TKE generation. It may be worth

noting that the estimation Ap 2 /T for E is appropriate only

in the case of a single turbulence velocity scale and time

scale.
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Garwood's first paper (1977) did not include an

example application of his model. It did include, however,

an interesting analysis of his and several previous models.

The analysis showed that the inclusion of the background

dissipation is sufficient to prevent infinite mixed layer I
deepening under adiabatic conditions.

Niiler and Kraus' Synthesis

Niller and Kraus (1977) published a review of one-

dimensional bulk models. They propose a sort of canonical

model with G given by (4.25) and

D=d *- (l-s) LU + h (1-n) (Bo+IBol) (4.42)

so that dissipation of surface generated, interface gen-

erated, and convectively generated turbulence is explicitly

included. This model assumes that only a fraction s of the
4 TKE generated by interface shear is available for mixing.

The rest is dissipated. Then

1 3 14' 1A (hAb - sAu - b) dth = (mo-md) u* + Eh [(l+n) Bo-(1-n)IB 0 1

+ 1 h Ip f IpdZ- ClAul 3
7 - 3 (4.43)

-h

where C IAuJ3 is a gross parameterization of the rate at

which TKE is lost to internal waves. Equation (4.43) is

slightly different than Niiler and Kraus' (10.29). They 0
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define Bo as the sum of the surface buoyancy flux plus

about 50% of the incoming solar radiation, which they treat

as a surface flux.

For the case of a linearly stratified ocean to

which a constant wind stress and heat flux are applied, the

heat and momentum equations yield,

hAb N2 h2 - t

and

2
f (sin ft, cos ft - 1).

Substituting these into (4.43) leads to

A B B' C
1 2 2 24 -2 -2

dth (2 <k > + 7N - Bt - 2su f h (1-cos ft)]

D E

M=C + yniB 0 *

(4.44)

An analysis of this case revealed a sequence of

phases in the development of the mixed layer:

* At the onset of the wind, terms A and D domi-

nate and the depth of the ML is linearly depen-

dent on t.
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* By time t1 (dependent on N and mo ) terms B

and A become comparable.

After this time, terms B and D dominate and the

ML increases 

as t
I/

e The deepening process continues until term C

becomes significant (at a time dependent

on N-1 ).

o As te rm B and C becom e com p arab le , deepe n ing

becomes rapid. Term C reaches its maximum at a

time proportional to f-l.

a Past this point, term C decreases, B and D again

dominate and deepening occurs as t

* Once depth becomes sufficiently large

( h v 3  / Bo) , c o n v e c t i v e d e e p e n i n g d o m i n a t e s

%0

the process and h is given by terms B, B'

and E.

4.3.5 Bulk Model Predictions and Intercomparisons

In the previous section we described a number of

bulk mixing layer models. The emphasis in this section will

4 be on model predictions and intercomparison.

The application by Denman and Miyake (1973) of the

Denman KT model (DKT) was described in the previous section.

The model was able to predict the variation in sea-surface

temperature, mixing-layer depth, and vertical thermal j
profile characteristics observed during an 11 day period at

OWS Papa in June 1970. Tabata (1965) addressed the effects

of advection on temperature and salinity at Papa, and Denman

and Miyake argued that these were far smaller than the

effects of synoptic scale meteorological events. Papa
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therefore appeared to be an ideal site for the collection of

data to support modeling of entrainment processes and mixed

layer dynamics. It was later the site of the Mixed-Layer

Experiment (MILE).

Thompson (1976) presented a rather detailed

comparison of the predictions of a Kraus-Turner model (DKT),

a Kraus-Turner model with Gill-Turner dissipation, and tne

Pollard et al. model (PRT) for a one-year time period at

Ocean Weather Station N. The observed isotherm depths for

the period are shown in Figure 4-5. Unfortunately, Thompson

read the data tape incorrectly and the isotherm depths

indicated in the figure, and used in the comparison should

be multipled by 5/3. The PRT model agreed best with

the misinterpreted data. Thompson (1977) published further

comparisons using the corrected data. Figures 4-5b and 4-5c

display simulations performed with the PRT and DKT models

(but with a very small value of m with DKT model). Figure

4-6 displays simulation performed with the Elsberry and the

Gill-Turner modifications of KT.

The summertime mixed layer predicted by PRT is

substantially shallower than that observed in the data. For

example, the PRT-predicted 1 October mixed-layer depth

(actually the depth of the 23 0 C isotherm) is about 15 m

versus 40-45 m. The depth predicted by the other models

are: 30 m for DKT; 30 m for EKT; 25 m for GT. The KT-type

models all predict overly large gradients at the layer base

and below. Only the GT model predicts a final profile in

near agreement to the initial profiles. The PRT model

exhibits insufficient winter deepening, and the DKT and EKT

models predict far too much deepening.
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FIGURE 4-5: (a) Observed isotherm depths vs. time between
* 24 March 67 and 12 March 68 at OWS November

(300N, 1400W). Depths in this plot should
be multiplied by 5/3 to obtain correct values.
(b) Isotherm depths from KT model using strati-
fication at OWS N on 24 March 67 as initial
condition. (c) Same as (b), but with DKT model

and the very small value m-0.0001.

4-46



APR Vi JI[L OCT ,JAN '8

- .23- ,,I/ ,( l*l

A 100-

apr '67 jut oct jan '68

O- ",- " \ ", ,- ;

SL cL

100-

GT IS0ThERMS
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m=0.001 2 .
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Price et al. (1978) performed an extensive analy-

sis of two cases of storm-induced mixed-layer deepening.

The emphasis in this work was on an assessment of the

importance of ML/ST interface shear to mixed-layer deep-

ening.

Temperature, salinity and currents were measured

during February 1973 and June 1972 at nearby locations in

the Gulf of Mexico. The cases were simulated using the

Niiler-Kraus (1977) model (4.43) with the last three terms

neglected. Two submodels were emphasized; both neglect

the surface buoyancy effect. In the TEM model (turbulence
erosion model), s = 0 and (4.43) becomes

!* f 3
- A(d h) hAb =

2 t

in the DIM (dynamic instability model) model md = m0 and

(4.43) reduces to

a variant of the PRT model, but with a critical value of F

" equal to S-1 .

Figures 4-7 through 4-9 display the meteorological

and oceanographic conditions observed in February and

the DIM and TEM simulations. The constants m and s were set

by requiring that the predicted mixed layer depths at the

end of the simulations equal the observed layer depth of 46

m. Price et al. found s - 0.70 and mo - 0.35. The required

value of m o found here is substantially smaller than unity

as was used by Denman and Miyake (1973).
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component response (4-10) predicted
by Price et. al. DIM and TEM models
simulated conTtions in Gulf of Mexico
in February 1973.
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The entrainment heat flux in Figure 4-8c is that

computed from DIM. A cold front passed over the observa-

tion site late on 9 February, and DIM predicts that nearly

all entrainment occurs during a 12-hour period centered at

about 2400 LT on 9 February. Price et al. argue that the

differences between the predicted and observed ML tempera-

tures shown in Figure 4-8a are due to horizontal advection.

Mixed-layer depth is shown in Figure 4-8b. DIM predicts a

very rapid deepening over about 12 hours and no further

deepening: TEM predicts a much slower rate. Price et al.

claim that the large variation in observed layer depth

variations result from inertio-internal waves with 0(5m)

vertical displacement. The entrainment tendency displayed

in Figure 4-8c is simply the rate of change of mixed-layer

temperature due to entrainment. The observational data and

DIM show large negative values of entrainment tendency late

on the ninth. TEM is a gradual erosion model and does not

exhibit the observed peak. TEM appears unable to describe

the rapid entrainment process. The simulated and observed

values of LU are shown in Figure 4-9. Good agreement is

realized only during acceleration on the ninth. After this

i -observed appears to rotate clockwise faster thanL u

-computed and becomes smaller. Price et al. suggest that

these results indicate the vertical propagation in inertio-

internal waves out of the mixed layer.

Price et al. provided additional evidence that mean

shear, and not wind stress, per se, dominated ML deepening

by showing that the observed entrainment tendency was well

correlated with -- .Lu, a rate or work, not with s 7 as

assumed by Kraus and Turner.
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Price et al. performed similar analyses with pre-

dictions of DIM and TEM for the June observations. The

observations and model predictions are displayed in Figures

4-10 through 4-12. The simulations were performed with

values of s and m chosen so that the predicted layer depths

were in agreement with the observed value, 26 m, at the end

of the 5-12 day simulation. The value of s thus determined

was 0.60, and the value of m was 0.9. These should be com-

pared with the February values 0.70 and 0.35, respectively.

The central conclusion of this work is that under

the circumstances observed mean momentum and shear across

the ML/ST interface are the keys to parameterizing the

entrainment process. Shear stress and * are not directly

relevant, in contradiction with the usual assumption of KT

models. These observations are in agreement with Price's

(1979) later reevaluation of the Kato-Phillips and Kantha-

Phillips-Azod observations. As described earlier, Price

suggested that these observations indicate a critical bulk

Richardson number (or inverse Froude number) of 0.6, in

remarkable agreement with the field observation described

above.

4 While the field observations and analysis of Price

et al. are consistent with the revaluated laboratory obser-

vations, predictions with the PRT model, with Fc = 1/0.6, of

the seasonal cycle as described earlier can only become less

accurate. Mixing will be predicted to occur to shallower

depths for larger Fc , as can be demonstrated by extending

the PRT model to the general case of critical Froude number.

AEquation (4.20a) becomes
h u* FC [4(l-cos ft)/f

2 N2
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4.4 DIFFUSION OR GRID-POINT MODELS

In the previous section we considered bulk mixing-

layer models - models which assume the existence of a mixed

surface layer. The partial differential equations for

buoyancy, salt and momentum conservation reduce to ordinary

differential equations for the mean values in the layer, and

these models are analytically simple. They have the attrac-

tive feature that much of the physics involved in upper-

ocean dynamics is explicitly treated, although in a param-

eterized fashion. They do not, however, treat the evolution

of conditions below the mixed-layer base, and if such is

desired an additional seasonal thermocline model must be

appended. They also do not allow a detailed analysis of

mixing processes within the layer.

Diffusion models, on the other hand, treat the

mixed-layer/seasonal thermocline system in a uniform

manner, and they do not require an a priori uniform mixed-

layer assumption. The partial differential equations (in z

and t) for b, s and v are solved numerically for the time

evolution of b, s and ) at a vertical array of grid points

which are closely spaced compared with the mixing-layer

j thickness. The mixing-layer depth if required is deter-

mined a posteriori from an examination of turbulence flux

predictions or from an examination of predicted tempera-

ture. The models are more complex to program and interpret

* and have not received nearly or much interest from the

oceanographic community as bulk models.
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Diffusion models require the explicit calculation

of turbulence fluxes as a function of depth and time. 0
and in many of the models the turbulence kinetic energy

is predicted as well. At the expense of simplicity,

diffusion models yield far more detailed predictions

of mixing layer dynamics than are possible with bulk

- -'~. models.

4.4.1 Buoyancy, Sal inity and Momentum Conservation

The basic conservation equations for buoyancy,

salt and momentum were presented in Sections 4.2.1 and

4.2.2. Closure of these equations requires the computa-

tion of the turbulence fluxes.

4.4.2 Turbulence Flux Models

Turbulence flux models can be classified in terms

of their complexity as "no equation" models, "one-equation"
or "k" models, "two-equation" or "k-l" models and "many-

equation" or "second-order closure" models. It may be

useful to discuss what is meant by these terms before we

describe specific models. "No-equation" models describe

turbulence fluxes algebraically, in terms of mean variables

(here b, S and v ), and perhaps an imposed length scale. An

45
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"eddy diffusivity" is usually defined and the turbulence

flux of a mean quantity, ¢ say, is related to the gradient

of 4 as

= -K 0z a,

where K is the "eddy diffusivity". Prandtl's (1925)

mixing length hypothesis is a well-known example of this

approach. Prandtl defined

m z (4.45)

where 1m is an imposed mi.':ing length. Equation (4.45) is

usually explained in analogy wi'h molecular diffusion in

which case kinetic theory provides justification. Tennekes

and Lumley (1972) should be reviewed for a critique of this

approach.

"One-equation" or "k" model's follow from Prandtl's

(1945) suggestion that the eddy diffusivity be related to

the local turbulence kinetic energy k2 . Prandtl argued

that the eddy diffusivity should be a local property of the

turbulence, which he characterized in terms of the kinetic

energy and a length scale. Then

K0 = kl.

The energy k is determined from a parameterized version of

the TKE equation, and 1 is imposed algebraically or empiri-

cally.
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"Two-equations" or "k-l" models include a second

transport differential equation for 1 or some quantity from

which 1 can be computed. Then (4.45) is used to compute K

The idea originated with Kolmogorov (1942). An equation

for 1 or an 1-like quantity such as E = k 3 /2 1- 1 must be

derived from the Navier-Stokes equations, then parameterized

* to make it solvable.

"Many-equation" or "second-order closure" models

are based on the transport equations for all of the Reynolds

stresses Tu (6 components) and turbulence heat fluxes

1 (3 components) which are derived from the Navier-

Stokes equation and from the heat or salt conservation

equations. Usually geometric simplifications are possible

and approximations can be made, both of which may signifi-

* cantly reduce the number of equations involved. The models

are usually referred to as "second-order" closure models

since closure is achieved by parameterizing higher-order

statistics such as u! uj uk The first such model was

proposed by Chou (1945), but real interest only arose in the

late 1960's. The models are complex and computer-time

consuming, and have only recently been applied to one-

dimensional upper-ocean simulation (Warne-Varnas, private

communication). The sequence of papers by Hanjalic and

Launder (1972), Launder (1975) and Launder, Reece and Rodi

(1975) provide detailed examples of this kind of model.

They are in principle especially useful for complex flows

which exhibit multiple length or time scales.

The Ekman Model

Probably the earliest upper-ocean diffusion model

is that of Ekman (1905) which ignored buoyancy and salinity f
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effects and assumed Km constant (a "no-equation" model).

This classic work produced the "Ekman spiral" descriptions

of the upper-ocean current response to steady wind stress.

This model is not appropriate to buoyancy influenced upper-

ocean studies and we will not address it further.

The MA Model

Munk and Anderson (1948) used dimensional con-

71 siderations and proposed that the eddy diffusivity coeffi-

cients of a "no-equation" model for heat and momentum should

.4 be functions of the gradient Richardson number which, in the

absence of salinity effects is

2I
Ri =  aga zT/J z U12 .

The Richardson number is a measure of the balance between

the stabilizing effect of the averaged density gradient and

the destabilizing effect of vertical shear. Munk and

Anderson did not consider salinity; they proposed the

following expressions (where Kh is the eddy diffusivity of

heat):

Kh = K0 (1 + 8hRi) (4.46a)

and

-n
Km = K o(1 + mRi) m (4.46b)

where1
n h = 3/2, nm = 1,2, 8h - 10/3, m  10, (4.46c)
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and Ko is a function (an unspecified function, in fact) of j
the surface wind stress. These coefficients were set by

analysis of atmospheric boundary-layer data. Munk and

Anderson proposed Ko = 150 cm 2 /sec for a wind stress of one

dyne-cm - 2 .

The VZ Model

Vager and Zilitinkevich (1968) proposed a one-

equation model for the eddy diffusion coefficients based on I
Prandtl's (1945) extension of classical mixing-length theory

for homogeneous flows. They did not consider salinity

( effects, and they proposed

Kb = K = C xk, (4.47a)
h 0

where C0 is a constant, R is a turbulence mixing length, ..

and k is the square root of the turbulence kinetic energy.

The turbulence kinetic energy is computed from a parameter-

ized form of the TKE equation for a buoyant fluid (4.6a):

2 2

a t k rn'jaZ-U' haa!~~~~~ ~~ 3J8k m ' hgz

+ C 1 az(Km zk2 ) - C2 k
3 /k, (4.47b)

where the first two terms on the right are the eddy dif-

fusion parameterizations of the first two terms on the right

of (4.6a), the third term is an eddy diffusivity treatment

of the turbulence flux term, and the fourth term is a

parameterization of turbulence energy dissipation rate.
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The constants C 1 and C 2 are set to 0.73 and

0.099 respectively. The length scale k is determined from a

hypothesis regarding boundary-layer turbulence from which

z

Z(z) = kfk-fldz.

0

The flux of TKE at the ocean surface is set to zero, and

the TKE itself is set to zero at the model bottom (not the

actual ocean bottom).

The MY Level 2 Model

Mellor and Yamada (1974) developed a series

of four turbulence closure models for planetary boundary

layers through a more or less systematic scaling of the

terms in a second-order closure model. The MY Level 2 model

is formally similar to, but simpler than, the VZ model.

Mellor and Durbin (1975) applied it to the oceanic case.

The MY Level 2 model can be expressed as

= - V Uksza (4.48a)

and

w'T' = /k'S H; z T, (4.48b)

which suggest an eddy diffusivity formulation with

Km=%/2Zk 'SM and Kh=N 'tksH . The turbulence kinetic energy,

k2 , is determined from a parameterized, steady-state TKE

equation,

0 = Km jza 12 
- Khagz - (21k)3 /15Z (4.48c)
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which represents a balance between shear production, poten-

tial energy conversion, and dissipation.

The model neglects the turbulence flux of turbu-

lence term. The mixing length £ is determined from a coarse

measure of the vertical extent of the turbulence field given

by the ratio of its first and zeroth moments:
- C 0

= wf k2zd Z/fk2dz. (4.48d)

The quantities SH and SM are stability functions which

are given in terms of the flux Richardson number

Rf = agKT/(. )(4.48e)

The functions SM and SH are displayed in
Figure 4-13 as a function of Richardson number. Note that

SM and SH are zero for Rf > 0.21 or Ri > 0.23. This
limiting Richardson number is a prediction of the model

and is not an imposed constraint. It roughly agrees with

the prediction of linear stability theory that a sufficient

condition for stability in a stratified shear flow is

Ri > 1/4.

Mellor and Durbin applied the model to the simu-

lation of the Ocean Weather Station Papa data of Denman and

Miyake (1973). They presented only a comparison of time-

depth isotherm contours which is shown in Figure 4-14. The

model predictions and the data agree very well. The data I.
includes internal-tides and inertio-gravity wave displace-

ments which are not relevant to this comparison.f
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The KKS Model

Kochergin, Klimok and Sukhorukov (1976) proposed

a two-equation model for the turbulence fluxes which in-

cludes parameterized equations for the time rates of change

of the TKE and turbulence dissipation rate. The model was

*applied to the oceanic case by Marchuk, et al. (1977), who

argued that the model provides more details of the evolution

. of turbulent processes and the structure of the mixed-layer!

seasonal-thermocline interface.

By the KKS model

K 08k2 /E (4.49a)

and

Kh = Km(l + 10Ri)1/ 2 (1 + iORi/3- 3 /2 (4.49h)

The latter equation is based on the MA model.
* 4

The TKE is determined from a model equation very

similar to that used in the VZ model:

4

k = K a U12 - K + ;z(K a k 2 ) - E (4.49c)

The dissipation rate is determined from

kr= 1.38 _k K 2 1 4 c- gcKBT (4.49d)

£2
=+ Dz(KmazC).

4-62 I[F
&



The constants in (4.49d) were determined from an analysis of

stationary duct flow. The fluxes of k2 and P are set to

zero at the ocean surface, and the quantities themselves are

set to zero at the model bottom.

Marchuk et al. applied the model to a rather

qualitative simulation of a storm-induced mixed-layer

deepening event reported by Halpern (1974). They presented

no direct data/model comparisons, but pointed out that the

layer did deepen approximately the correct amount. Figure

4-15 displays predicted temperature and dissipation rate

profiles at 6-hour intervals. The model input wind speed

increased linearly from a value of 4 ms-1 at the outset to

14 ms -1 at 36 hours. It then decreased linearly to 5

ms-1 at 60 hours. The predictions show a rather uniform

mixed-layer deepening rate during the first 36 hours,

followed by an increasing rate of deepening during the

remaining 24 hours. The reason for this is not addressed.

The turbulence energy dissipation rate (which is probably of

the same order of magnitude as the production rate) is at

first largest near the surface where shear is largest. As

the simulation proceeds, however, shear at the layer base

gives rise to equally large or larger production and, hence,

dissipation rates. Turbulence generated at the layer base

is most responsible for deepening.

The KSI Model

Kondo, Sasano and Ishi (1979) proposed an upper

ocean model for the detailed analysis of diurnal period

variations of current and temperature. The KSI model is

substantially different from the other diffusion models

discussed here in that the eddy diffusivities are based on
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atmospheric boundary l1,er observations cast in the form of

Monin-Obukhov theory. Monin-Obukhov theory was developed to

describe the base region (first 30 meters, roughly) of the

atmospheric boundary layer within which vertical variations

of turbulence fluxes can often be neglected.

The KSI model extends Monin-Obukhov formalism

to apply to cases in which the fluxes vary. It also incor-

porates the salinity equation with the assumption that the

eddy diffusivity of salt and heat are equal.

Kondo et al. published the results of a series of

computations. An example is presented in Figure 4-16 which

shows predicted and observed surface temperature diurnal

variations for four mean wind speeds. The data are averages

over many observations performed in March, April and Septem-

ber. The model agrees well with the data and predicts

diurnal temprature changes as large as IOC under light

winds of 2 - 3 ms - 1 to ab,at 0.20C for winds of 7.3 ms-1 .

* Details of the observation and of the boundary condition

applied to the model are not described.

4.4.3 Diffusion Model Intercomparisons

The diffusion models discussed in the previous

section can be roughly divided into two classes: those

based primarily on observation, dimensional analysis, and

simple stability arguments, and those based on a treatmenti, of some kind of the turbulence kinetic energy equation. The

MA and KSI models fall into the former case while the VZ, MY

I4-
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I
and KKS models fall into the latter. The numerical solution

of the conservation equations is not made especially diffi-

cult by the use of any of these diffusion models, although

the VZ and KKS models lead to substantially more complex

computer codes. Perhaps it is a result of this complexity

that very few comparisons between the models have been4 I performed.

4 1 pdWe are aware of only one attempt at a diffusion

model intercomparison, and more comparisons are sorely

I needed. Martin (1976) compared the MA, MY and VZ models,

and a first order result of the comparison is presented in

Figure 4-17. The figure shows the ratios of Km and KH to
their neutral unstratified values as a function of gradient

Richardson number. The VZ model ratios are only approxi-

mate since they are based on a simplification of (4.59b).

Clearly substantial differences exist between the models.

The MA model predicts turbulent mixing even under very

stable conditions (very large values of Ri). Under such

t conditions the diffusivity of momentum is far larger than

that of heat and it could perhaps be argued that in this

case the turbulence fluxes are parameterizations of momentum

transport due to internal waves. The VZ and MY models, on

the other hand, predict a Richardson number mixing cut-off

of 1.0 and 0.23 respectively.

* Martin also compared the predictions of the three

models for two cases, wind deepening and wind deepening with

heating. Figures 4-18 through 4-21 display predictions of

the three models for a case in which a wind stress of 1
I was imposed at time zero on the surface of a body* ~dyne/cm 2 wa im o e at t m ze o o th su f c of a b d

of water with an initial stratification corresponding tof O.loC/m. The surface heat flux was set to zero. Figure

r4-67
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4-18 presents the time evolution of mixed-layer depth and

very substantial differences between the model predictions

are apparent. Mixed layer depth is defined as the depth at

which KH was less than 1.0 cm 2 /sec. Since there is no

Richardson number cutoff, the MA Model predicts slow con-

tinued deepening. Eddy diffusivities predicted by the MY

and VZ models do cutoff when the degree of stratification

becomes sufficient. From that point no mixing can occur.
Thus steady state solutions are possible with these models.

Figure 4-19 presents the temperature profiles at t = I and

* 15 days after wind onset, and Figures 4-20 and 4-21 present

the amplitudes of the inertial oscillation and the mean

current after 15 days. The mean current is defined here as

the current with oscillations of inertial period removed.

The models all predict a slab-like inertial oscillation

superposed on an Ekman-like spiral.

Predictions for Martin's second case, wind mix-

ing and heating are shown in Figure 4-22. In this case the

water is initially unstratified so that the response to the

1 dyne/cm 2 wind stress is rapid deepening. According to

- Martin, the MA predicted mixed-layer depth is not well

defined until about day 10 and is shown as a dotted line.

As the total amount of thermal energy input to the water

increases, the water buoyancy impedes vertical mixing, the

layer retreats to steady-state depth, and the layer con-

tinues to warm.

Martin also performed a similarity scaling

analysis with the following results. First, for the case of i
wind mixing and no heating nearly all the differences
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between the VZ and MJY models could be accounted for by the

difference between the cutoff Richardson numbers. The

predictions were not especially sensitive to the values of

the vaious eddy coefficients. Second, for the case of wind

stress and strong heating the differences in mixed-layer

depth were greater than that which might be accounted for by

the differences in cutoff Richardson number. Third, for the

conditions simulated the steady state mixed-layer depth in

the case of wind deepening and no heating is

hL= 2.7 Ricl/4v*(Nf)-!/2 (4.50)

where Ric is 0.23 for the MY model and 1.0 for the VZ

model. This expression is identical in form to that derived

by Pollard, et al. (1973). In fact, Pollard, et al. find in

place of 2.7 Ric1/ 4 in (4.50) the values 1.68, if we use

Ric=0. 2 3, then 2.7 Rici/ 4 =1.86. This is very good agree-

ment. The form of (4.50) results from the fact that for a

constant surface stress, the fully developed inertial motion

receives no net momentum over an inertial period. At the

end of the first half-inertial period after the wind onset,

the layer has as much momentum ((hu) 2 +(hv) 2 )i/2 as it ever

will have and the layer has deepened to the depth at which

the shear across the mixed-layer (seasonal thermocline)

interface is small enough that mixing ceases. No further

deepening can occur.

4.5 DISCUSSION

The one-dimensional upper-ocean models discused in

this section represent attempts to understand the physics of

4-74

-own



I
I

ocean processes on a small (tens of meters) scale at speci-

fic locations. The connection between these models and

the types of models studied earlier (i.e.--large scale

circulation and fronts) is not explicit, expecially since

one-dimensional models neglect horizontal advection. And

yet the larger scales of motion act in a sense to control

ocean conditions at specific locations. The logical step

seems to be twofold:

.*--modify one-dimensional upper-ocean models to

include the influence of horizontal inhomogene-

ities in the temperature, salinity, and current

fields of the regions modelled, and

* develop two- and three-dimensional models with

sufficient horizontal resolution to include

synoptic scale phenomena.

The first approach can be implemented 'uy obtaining

enough data to specify horizontal gradients as a function of

time. Such comprehensive data is not always available,

however.

* The second approach seems to be more promising.

Indeed, NORDA is developing a large-area upper-ocean model,

based on the Mellor-Yamada Level 2 diffusion model, for

FNOC. Specifics of the model and an evaluation of its

success must await further testing.

The connection between the upper-ocean models and

I smaller scale processes is more readily apparent. The

density structure above the seasonal thermocline strongly

I 4-75
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influences the maintenance and propagation of internal wave

energy. The turbulent region at the base of the mixed layer

may contribute a good deal of energy to internal waves. And

the motion of the mixed layer in response to atmospheric

forcing may act to couple internal waves to atmospheric

motions. On the other hand, the presence of internal waves

in the upper ocean affects the observed thermal structure.

These types of questions are just now being

addressed and very few attempts have been made to couple

upper-ocean models with internal wave models. This is

partially because the upper-ocean models are predictive,

while most internal waves models are statistical, and partly

because, although the existence of interactions between

upper-ocean processes and smaller scale motions may be

apparent, the physics of the interactions is not.

4
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Section 5

IINTERNAL WAVE MODELS
5.1 INTRODUCTION

In this section we will discuss models which

have been developed to describe the oceanic internal-waveI.. ifield. To this point in this document we have addressed

models of larger scale phenomena; these models are deter-
ministic in the sense that they produce estimates of observ-

I ables such as averaged current or temperature at specific

locations and times from conservation principles. At

smaller scales, such as those which describe internal waves

(and turbulence), the models become far more empirical since

the sources and sinks of the energy associated with small

scale processes and their internal dynamics are not well

understood.

5.2 INTERNAL-WAVE SPECTRAL MODELS

Garrett and Munk (1972) developed, or in their
words "contrived," an internal-wave energy-density wave-

number-frequency spectrum from which can be derived spectra
and coherences of measurable quantities such as vertical

displacement as a function of time or position. The model
has provided a common framework for the analysis of data

from fixed, towed, and dropped measurement systems, and has

had a very significant impact on the way internal-wave

observations are performed, on the manner in which data are

analyzed, and on the interpretation of analyzed data.

I
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In the following section we will describe the

basic empirical internal-wave model of Garrett and Munk

(1972) and its subsequent embellishments. The details of

the construction process are important to an understanding

of the model limitations. Then we will describe models

which have been proposed to treat the effects of apparent

fine structure in internal-wave measurements.

The essential components of the model are a

horizontal wavenumber-frequency energy-density spectrum

which describes the internal-wave energy content in wave-

number-frequency space, and vertical wave functions which

describe the distribution of that energy in depth between

horizontal and vertical currents and particle displacements.

The energy density spectrum is not measured directly but

may be inferred from measurements of what are, in effect,

its projections. These include current and displacement

frequency auto-spectra, horizontal and vertical wavenumber

auto-spectra, and coherences.

* 5.2.1 Basic Assumptions of GM-Class Internal Wave

Spectral Models

4" Internal wave spectral models attempt to describe

the statistical characteristics of internal waves in terms

of a wavenumber-frequency energy-density spectrum E(k,w ). I
From such a fundamental spectrum predictions of such quanti-

ties as current and displacement spectra and coherences can I
be made.

5-2 1
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I
Garrett and Munk (1972) were first to derive an

internal-wave energy-spectrum as part of wl it has become

I known as the GM72 model. Garrett and Munk (1975) subse-

quently produced a modified model, GM75, as did Cairns and

Williams (1976), and Desaubies (1976). MUller, et al,

(1978) performed a rigorous analysis of IWEX (Inter-

nal Wave Experiment) data and produced both a careful

I assessment of the GM-class of models and a much more

complex energy-density spectrum model. The basic assump-

Itions on which the models are based are the following (as

characterized by M~ller, et al.):

1. The observed fluctuations are a realization

of a statistically stationary process.

2. The fluctuations are horizontally homogeneous.

3. The fluctuations are a superposition of

linearly propagating internal waves.

4. The wave field scales according to WKB theory.

5. The wave field is horizontally isotropic.

i 6. The wave field is vertically symmetric.

I
I
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The first, second and fifth of these assumptions

reduce the complexity of the statistical fluctuation-field

description. The third imposes a set of dynamic con-

ditions which the fluctuations are assumed to follow and

implies that the observed small-scale structure results from

reversible internal-wave-caused distortion of otherwise

smooth profiles rather than from persistent layering. The

fourth allows the wave energy-density spectrum to be con-

veniently related to measureable wave field statistics such

as correlation functions. The sixth assumption means that

the averaged upward and downward wave-induced energy

fluxes are equal.

5.2.2 Basic Formulation
(

In the analysis which follows, we will make use

of the following quantities:

um(X,z,t) the wave-induced velocity component in the m

direction as a function of horizontal location

x , vertical location z, and time t;

k the horizontal wavenumber with components (kl,k 2 ),

magnitude k, and direction e= arctan (k2 /kl);

4

W the wave frequency, f< w<N;

a the sign of the local vertical wavenumber which we

take to be positive (negative) for downward (up-

ward) propagating energy and upward (downward)

propagating phase;

A(k,w,a) the random complex amplitude of the wave

component with wavenumber k, frequency w,

and vertical propagation direction a.
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Velocity components uI and u2 refer to the horizontal

directions x and x2 , and u3 refers to the vertical

velocity (positive upward). For notational simplicity we

will use the symbol u0 to represent vertical displace-

ment.

Linear Superposition of Waves

We follow Muller et al. (1978) and represent the

mth velocity component at location (x,z,t), which arises

S from both upward and downward propagating internal waves of

all wavenumbers and frequencies, as the linear sum
2

V ~ ~~ u(X,z,t) fd$/dw ciz)Akw)m(,td dw exp[i(k.x-wt)]U (k,_,z c)A(k,,a)

&m

* *
+ + exp[-i(k.x-wt)]U (k,w,z,o)A (k,w,o) , (5.1)

- rm

where Um(k,w,z,o) is an appropriate wave function. The

4 1 sum over c is taken with o=+l and -1. The integral over k

is actually the double integral over k I and k2 with

dkwdk 1 dk 2 and with limits of integration -- to + .

Integral symbols without limits will represent integrals

over these bounds. The frequency integral is taken over

I positive values only from zero to ir'inity. Slashed inte-

gral symbols will be used in this case. We can write

U Um(k,w,z,a ) - Dm(k,w) W(k,w.z,a). (5.2)

S. .. 5-5



In (5.2) W is the suitably normalized solution to the linear

equation for vertical velocity

2 2 2
d W + k p(z)W = O, p(z) = 22 (5.3)

* where N(z) is the local Brunt-VaLis*ea frequency which

is assumed to vary only in the vertical, and f is the

inertial frequency. The linear operators Dm relate the m

velocity components to W through the linearized equations of

motion which are assumed to describe the wave field.

-* These operators are:

D = i -I .

k2 2 2 2 2 ~-
D1  (kl+f k,/u" exp(iklU/k)f)d

-2 2 2 2 2 (5.4)
k D 2 (k 2 +f kl/U ) exp(ik2 w/hlf)d z  ,

D3 =1

5-.

We note in passing that the integrand in (5.1) can be

written more simply but less conveniently as

2 cos(k-x-wt+ mr+ a )IU mhA (5.5)

where m(k, w ,z,cy ) is a depth-dependent phase shift asso-

ciated with the mth velocity component and depth and

wa(k,, ) is a phase shift associated with the particularwave.I

It may be of some help in understanding (5.1)-(5.5) to 3
consider the simple special case of constant N. The basic
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solutions to (5.3) are C(k, ,c) exp(iT 2 z) where E=kp is

I the vertical wavenumber, and the coefficients C(k.w , j ) are

determined by a normalization requirement. Then from (5.4)

UO = Cw-I exp[i(-o+Gaz)]

I 2  f2 2 2,: U =Co~k-2(kl~ k2/W exp[i(Ol+CYBz)] ,

-. Cak 2 (k2+f 2 2/W2) ex

12 = 1 k(k2+f k 1  exp[i(0 2 +oaz)], (5.6)

and

U 13 C Cexp (iaaz)

where the phases are given by

0 7Tr, T 7+ k 1 w/k 2f , 32 7 - k 2 w/k 1 f. (5.7)

Equations (5.6) and (5.7) can be substituted into (5.1).

The integrand becomes

exp[i(k.,+aBz-wt)) UrA + exp[-i(k.x+aBz-wt)] U A ,

I
I

or equivalently

2 cos(k.x+a~z-wt+o +0a)JUmIIA!,
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so that the wave field is the sum of simple plane waves

with phase propagation angle tan- 1 (kl+k2),c to the

vertical.

The frequency integral in (5.1) is taken over

the range zero to infinity primarily as a mathematical

convenience. Strictly the integral should be taken over

the range f<w<Nmax where Nmax is the maximum Brunt-Visdl

frequency in the water column. In many situations it is

taken effectively from f to the local value of N(z) with

the assumption that motions induced by internal waves

which exist in regions of higher N are negligible.

With the definition of negative frequencies (5.1)

can be written in a more compact form. We define

A'k-wa)= A (-kw,-o) (5.9a)

and note that

Um(k,-wc) = UM  (-k,w,-o). (5.9b) -"

Then (5.1) can be written as an integral over positive -.

and negative frequencies:

U M (xzt) =Ef dkfdw extp[i(k-x-wt)]!, (k,w,z,a) A(k,w,c).
(5.10) ""
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We define the covariance Rmn between u m at

3 location (x,z,t) and un at (x',z,t') as the ensemble-aver-

aged inner product

I
Rmn(xzt;xIz''t') = <Um(xzt) u*(X' z' ,t')> (5.11)

J 1 ,

Since un is real Un*=Un.

I

! i From (5.10), (5.11) can be expressed as

a a' (5.12)

<A(k,w,o)A (k', ,O' )> U (kw,z,c7) UT (k',w',z',a')

Statistical Stationarity and Horizontal Homogeneity

The assumptions that the wave field be statisti-

cally stationary and horizontally homogeneous mean that

R mn(x,z,t;x',z',t') = Rmn(r, ,z,z'), (5.13)I
where r = x-x' and - = t-t'. A necessary and sufficient

condition for (5.13) is that amplitudes A be orthogonal with

1 5-9
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respect to k and w; that is

<A(k,w,a)A (k',w' ,O')> = E(k,w,a,c') 6 (k-k')6(w-w')

(5.14a)

We note that our treatment of negative frequencies (5.9)

implies through (5.14a) that

E(-k-wa,-o) ;E~k ~o~') 5. 14b

By (5.14) contributions to the covariance arise only from

the products of wave components with identical k and . The

contributions from other products vanish on average, and

(5.13) becomes

Rmnr ,T , Z,z' Z f dk fdw e xp [ i k -r -w-r

mnn

The factor of j has been inserted in (5.14) so that the

variance of a variable um  Ii.e., Rmm(O,0,z,z,)] is ob-

tained by integrating over positive frequencies. This will

be clarified below.

We note that if we ascribe units of length 3 to A as
implied by (5.1), then E here has units of length 4  time.
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Normalization Condition

! A.' With a suitable normalization for Um , E(k, ,wa')

1 is the wavenumber-frequency energy-density (in k- w space)
,4, spectrum. We require

ijdz(UU 1 .43 2 U2  + (1+N2/w 2 ) WV ] - b (5.16)

-h

where z = -h represents the ocean bottom and b is a depth

scale. The normalization determines C(k,w,a) such that the

mean-square energy in each normalized elementary wave is

identical. The quantity N2 WW* ,,-, 2 is the root-mean-

square potential energy. With (5.16) the total root-mean-

square energy per unit surface area, Eo, is given by

if[ -233f kidw E(k,w,a,')

-h ,(5.17)

so that

is the per-unit-area energy density associated with waves of

wave number k and frequency C.

Modal Wavefield Description

Two special cases of (5.15) corresponding to un-

correlated propagating waves and standing vertical modes are

5-11



of particular interest. The latter forms the basis of the 1

GM models.

In the first case, if the complex amplitudes of
upward and downward propagating waves are uncorrelated

I,]

E(k, w,o,a') E(k, w,o) if a a',

-0 otherwise. (5.18)

Then (5.15) simplifies to

Rmn(r,T.,z,z') - fdkffdw exp[i(k-r-wT)J Li

x : E(k,w,c)U( U (k,w,z,a). (5.19)

Then, if we further assume that the wavefield is vertically

symmetric so that on average the energy associated with
upward and downward propagating waves is equal

E(k,w,) = E(k,:), (5.20)

and

R(r,T,z,z') - fdkfdw exp(i(k-r-w-)]

x *E(k,w) U (k,w,z,a) Un *(k,w,z',a).

Assumptions (5.18) and (5.20) imply a modal
representation. Modes must satisfy vertical symmetry, -
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since upward and downward propagating waves are coupled

through the surface and bottom boundary conditions. In this

I# case. (5.15) becomes

1 I -
I Rn(rT,z,z') -fqkdw exp[i(k.r-wT)]-en

x i E(,W)U mj(k,Wz)U (kcoz') (5.22)

where Ej(k, w)-O except for discrete values of k or w. The

modal wavefunctions are given by the sum of two propagating

components with appropriately related phases as

U mj(k w, z) rnS-U m(kwz,o). (5.23)

where Umj is a solution to the boundary value problem (5.3)

with W - 0 at top and bottom. We will take w to be contin-

uous and the solutions will be non-trivial only for a

discrete set of values of k - ocj(w). Note that this

dispersion relation involves the magnitude of k, not its

direction. It then becomes convenient to express the

integrals in (5.22) in terms of k and e as
2v

Rmn(r,r,z,z') - (2w.)'f dqdk f de exp[i(k.-r-w)]
0

x *E (k,ew) U (e,w,z) Utj (e,w,z). (5.24)

To obtain (5.24) we have defined the continuous wavenumber-

magnitude/direction/frequency spectrum E as

1(k,e,w) 2kE(k,w), (5.25a)
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where from (5.14b)

E(k,e+,) = 2wkE(k,-w) (5.25b)

We then introduce modes to obtain (5.24).

We can express Ej(k,w,e) as Ej(W,e) 6(Kj-k) using

the dispersion relation so that (5.24) can be simplified to

27t

Rin( r,T,Z,Z') = (2w)- iJdw fde exp [ i~ij-W T') I

0 j (5.26)
x E i(em Umj(ewz ) Unj (e, ,z')

Equation (5.26) provides a complete description of

the wave-field second-order statistics (i.e., covariances)

with the stated assumptions. The wave functions Umj(Weez)

can be obtained analytically (in cases of very simple N(z)

profiles), numerically, or approximately with WKB methods.

The specification of the spectrum Ej(w,e) completes the

description.

While it is not central to this section, the

assertion that the wave field is a Gaussian random process

is convenient in modeling certain aspects of the wavefield

(for example, the influence of passive fine structure as

described in a following section). In this case all

moments and joint moments can be calulated in terms of the

covariances. In addition, it can be shown that Ej(e,w)

is the variance of the amplitude of jth mode wave with
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direction e and frequency ', and that these amplitudes

themselves satisfy a Gaussian distribution. It is possible

in fact to derive (5.26) from a multi-dimensional Karhunen-

K ]Loeve expansion of the process (Dozier and Tappert, 1978).

This approach may be more rigorous than that described

here. While intuitively appealing, (5.1) may not be

formally appropriate since it implies that the Fourier

integral of um exists. Strictly, such transforms do not
exist for stationary random processes. The Karbunen-

Loeve expansion circumvents this problem and allows (5.26)

to be derived directly. The application of the expansion to

a description in terms of propagating waves is less

straightforward since the wave function used in the expan-

sion must be orthogonal, which generally is not the case for

the propagating wave functions.

Horizontal Isotropy

Garrett and Munk hypothesized that the internal

wave field is horizontally isotropic, so that the covariance

is a function of r, not r. For this to be the case V can

not be a function of 0. Then from (5.25)

E(k,w) - 2rkE(k,w), (5.27a)

E(k,-w) i E(k,w), (5.27b)

and clearly

Ej(eW) - Ej(w) - Ej(-W). (5.27c)

5-15

~ It _______ ____ ____'61 ___



Equivalent Continuum

Garrett and Munk pointed out that a many-mode

description of the wave field would be required so that they

"preferred to blur the discrete lines into an 'equivalent
I continuum.'" In addition, the observational data which was

available was cast in either frequency or horizontal wave-

number form so that a similar model formulation was appro-

priate. They obtained wave functions from a WKB-like

analysis, and a WKB modal dispersion relation Kj(w). Then

they introduced the equivalent continuum in which contri-

butions to Rmn are assumed from all values of k and w.

In the equivalent continuum

Sk (w) exp (iic'r) Umj(69wz) U* (e e,z,)

j~l *=J1dk E (k, w ) exp (ikr-) Um(k, 8 , ,z) Un (k,e,w,z')

(5.28)

where Ec(k,w ) is the equivalent continuum wavenumber-

frequency spectrum and Um(k,e , w,z) is the WKB wave func-

tion with j replaced by k and w using the inverse dispersion

relation, j(k, w), and with the integer constraint on j

removed. Note that

Ec (k,w) - EJ(w)(a 8j/a) (5.29)

where Ej and Kj are treated as continuous functions of j.

With (5.28), (5.26) becomes

2w
Rmn(r,r,z,z') " (2w)-fdw/dk dO *xpj(ik.r-r)]

-- e *ik -)

x iEc(k,w) VM(k,e,w,z)Un*(k,G,W,z,) (5.30)
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Alternatively, (5.30) can be -'ritten

R m(r,TFZIZ) fdwfdk exp[i(k'r-w- )]

x j (k w) U m(k,wz) U * (k~wz') (5.31)

where, following (5.25),

E~ (k,w) - (2nk)- c (k ,(L) (5.32)

Form (5.31) is sometimes convenient since it permits the

direct evaluation of one-dimensional horizontal Fourier

transforms. Equations (5.30) and (5.31) are the essential

constituents of the model.

* Frequency and Wavenumber Spectra

From (5.30) and (5.31) it is straightforward to

obtain component frequency and horizontal wavenumber spectra.

Such spectra are computed from experimental data. We define

the frequenc'y covariance or cross spectrum Cmn as the

Fourier transform of Rmn by

C~(,,, ,z) R (r:,-,z,z') exp (iwT) (5.33)

so that the inverse transform is

IR ,(:,'r ,z,z') -*fdw C (j,O),z,z') exp (-i1T). (5.34)
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Since Rmn is real

C = C* (r,w,z,z') (5.35)
mn -

-1 and since by stationarity and homogeneity

R1m(r,T,z,z') = Rnm(-r,-T,z',z), (5.36)

we have

C m(rc,,z,z') = Cm(-r,-(,z',z). (5.37)

The variance of component m then is

R (o,o,z,z) f J dw Cn(o,w,z,z)

= f dc Cmm(O,w,z, z) (5.38)

from (5.37). The variance of Urn is, therefore, equal to the

integral of the autospectrum over positive frequencies.

The coincident spectrum Pmn(w) (co-spectrum) and

quadrature spectrum Qmn(w) are defined as the real and

negative imaginary parts of Cmn(w); that is

CMD(r,w,z,z') - P (r,w,z,z') - 1 0 1n(r,w,z,z'). (5.39)
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Following Bendat and Piersol (1971) we can view the value

of the cospectrum at frequency w as representing the contri-

bution of frequencies in a narrow band around w to the aver-

age product <um(t)un(t)>. The quadrature spectrum is

the same except that either um(t) or un(t) is shifted

in time sufficiently to produce a j 7 change in phase at w.

Often the covariance spectrum is presented in nor-

malized form. Let

Cmn(W) = [P 2(W) + 2 (w)]' exp

where the phase is

Wmn(e) = tan - (0n/P ) (5.40)

Then the coherence is defined as

Coh (W) ICmn(W) (mn C (5.41)

the normalized squared amplitude of Cmn. If the coherence

is zero at frequency w, Cmn=0 at that frequency, and the

contributions to um and un at that frequency are uncor-

related. The maximum possible value of Coh is unity,

which is achieved only if the Fourier components of um and

un at that frequency have proportional amplitudes through-

out the ensemble. Lumley and Panofsky (1964) provide the
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example of two time series u(t) and v(t) where v(t) is just

u(t) shifted by some constant time interval T. In this case

the coherence is unity at all frequencies and the phase at

, frequency W is WIT. This suggests that we can use the phase

to estimate a time lag T by 4(O)/co at sufficiently large

values of coherence.

An analogous set of relationships exists for hori-

zontal wavenumber except that we consider both positive and

negative values of k. We define

Cmn(k,rz,z') = . Rd Rn(r,,,z,z') exp (-ik.r) (5.42)

so that

Umn(,,~, dk Cn(h,T,z,z, )cxp (il. ). (5.43) I

With definitions (5.33)-(5.43) the frequency and

wavenumber spectra can be derived from (5.30) and (5.31).

The frequency cross spectrum obtained from moored sensors at

depths z and z' separated horizontally is, from (5.30) and

(5.33),

Crmn(,w,z,z') F - -dk fd0 exp (ik.r) E (k,)U m(k,e,w,z)
0 *

XU n (k,ew,z'). (5.44)
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In the case of components at the same location,

r-O and z-z' so that

C mn()Cmn (O,W,Z,z) = T dk de E k,c kzu,)

X Un  (k,6,w,z).

Horizontal wavenumber spectra are most easily ob-

tained from (5.31). We imagine covariances Rmn(_r,O,z,z)

which could be obtained from an instantaneous snapshot of

Um(X,z,t) along a range in x, perhaps from an acoustic

sensor or a fast tow. If we take r = (r,O) so that the

coordinate system is oriented along the separation, then

from (5.31) and (5.42)

Cm(k)'c(kl,o,z,z) = f dcJ dk E c(kw) U (k,io,z)
mn I mni f' 2 C- m

, (5.46)
X Un  (k,(uz)

In the case m-n we make use of the isotropy con-

dition that Ec(-k,w) - Ec(k,w) so that

,(kl-k2 ,) mUm (k k z ) = E(kl,k2,W) mUm (kk 2 ,,

and then

C(k I )= dcf dk E (k, ) U U * (*k,,z)
MM 1 f Jw 2 c-' mm (,L

This can be expressed in terms of Ec(k,w) from (5.32) as
o

C(k ) f 1 d dk (k2k (k U U (k,e,z).

(5.47a)
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In practice it is not possible to distinguish contributions

to Cmm(kl) from positive and negative kl. Therefore,

it may be more appropriate to define the spectrum

S2 CM(k1 ) (5.47b)

since Cmm(-kI) = Cmm(kl).

It is possible to perform ocean measurments and

estimate various auto-spectra, co-spectra and coherence.

These observations can be used to deduce Ec(k, w) through

expressions like (5.44)-(5.47) if the wave function can be

specified.

5.2.3 Wave-Functions and the Dispersion Relation

Garrett and Munk obtained the wave function

W(k, w,z) from the exact solution of (5.3) with homogeneous

boundary condition in the case of an exponential Brunt-

Vais~la profile N(z) = NoeZ/b.* An exact solution in the

form of Bessel functions was derived which was simplified

for two cases:

1. wave frequencies w<<N(-h) where N(-h) is the

minimum Brunt-Vaisili frequency of the water

column;

2. wave frequendies N(-h)<<X<N(z) where N(z)

is the local Brunt-Vaisala Frequency;

* z is taken positive upwards.
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The first case is distinguished by the absence of

turning points where ( = N(z). The solutions of (5.3)

change in character from oscillatory in z for w <N(z) to

exponential in z for w > N(z). The second case corre-

sponds to higher frequencies, which do have turning points,

but it applies to locations z far from the turning point.

The Bessel function solution is exact in both regimes.

An alternative approach was described by Desaubies

(1973) using the WKB method, which was originally devised

for boundary value problems in quantum mechanics. Asymp-

totic solutions for large k valid for all depths can be

obtained from WKB theory for general N(z) profiles. In the

case of frequencies .,ss than the minimum BV frequency of

the water column, Nmin, the WKB solution is (Olver, 1974)

W(k,cz) = F(k,.) ( (s )'z) (5.48)
-h

for w < Nmin'

where F(k,w) is a constant determined by the imposed norm-

alization condition. In the case of frequencies with one

turning point zo , and o.t -_i1latory behavior for z>z o , the

WKB solution is

W(kc ,z) = G(k p- (z) (-) Ai k2/ 3 ) (5.49a)

for N mi <,N(z)
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where

2(_ 3/2 jzZ

3 . z p -(zW dz' , (5.49b)

0

and Ai is the Airy function. The Airy functions Ai and

Bi are sketched in Figure 5.1. At depths above the turning

point is negative and Ai is oscillatory; at depths below

Ai decays. Strictly the solution should be written as

(5.49a) with an additional term of identical form to (5.49a)

but with Ai replaced by Bi. The contribution to the so-

lution from this latter term is always very small and can be

neglected. At large negative values of its argument

Ai(x) . X-cos[I (-x) 3/2_r] (5.50)

which will be useful.

Low Frequencies

We will consider the low frequency case first.

The bottom boundary condition (at z--h) is satisfied by

(5.48). The surface boundary condition is satisfied for

k = =j(U) (5.51a)

where

0

= JPi(z') dz' (5.51b)

-h

The eigenvalues computed from (5.51) are accurate to O(k-1 ).
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Figure 5.1: The Airy functions Ai(x) and Bi(x).
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As mentioned earlier, Garrett and Munk normalized

their wave functions so that the mean energy per unit sur-

face area of each mode is identical. This means

dz [U1U1+ U2U 2  + (i+N / %2*" = b. (5.52)

-h

From (5.4)
* -i22 2 W2.

IU1 + U2U2  (1+f /)(d W)

Equation (5.3) can be multiplied by W and integrated by

parts to yield

(dZW) 2dz'= k 2  p(z')W2dz'.

-h _h

These two results can be combined with (5.52) to yield the

normalization condition

0
N N2_ f2

f4 2 2 dz = b. (5.53)

-h

The coefficient F(k,w) in (5.48) is obtained by substituting

(5.48) into (5.53), replacing sin 2 ( ) by 1/2[1-cos2( )],and

integrating the cos2( ) integral using the method of station-

ary phase. The latter integral vanishes, and

0

2 (k) = 2b( 2-f 2 ) [A 12 7 j (5.54)
-h 

""_
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or

2b ) 1 (5.55)

which defines I.

For the case considered by Garrett and Munk N(z) * NoeZ/b and

z z
hp- ( Z')dZ f [,2 2A

f~~~ -f /z)z f(Ad
-h -h

b-G 2-2f 2  2 * 2 2  
. r2 \I

- ~re o CZ - arccs -h)E(556

If we(N(-h) this becomes

t(LI2_-f 2 - '  [N(z)-N(-h)]

and (5.48) can be approximated as

2 Sin kb ( _f 2 2 [N(;)-N(-h) •
W(k,)z) - (k, ) (5.57)

The dispersion relation (5.51) becomes

:1 N) = b ) ) (5.58)

b 0
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and for a deep ocean

- ( 2 _f 2 )j"j = bN - ) ,(5.59)

0

The integral in (5.54) is easy to integrate and for w <(N
has value bN O . With F(k,w) evaluated (5.48) is written

finally as

W(k,. .z) I 0 ( ) sin jkb ( 2 f )-

[-,(z)-N(-h)] ' (5.60)

for ., N(-h) << No
which is exactly the expression given by GM.

Higher Frequencies

In the case of frequencies with one turning

point, the approximate dispersion relation is obtaiLed from
the surface boundary condition. If o is given by (5.49b)

with z-O, the dispersion relation is given by

Ai(k 2 /3 . ) a 00

so that the eigenvalues of kj(w) are given in terms of

the zeros of Ai. For large values of k2 /3 o, zeros of
Ai are given by (Abramowitz and Stegen, 1965, p. 450).

-3 " - 2(4-1)

or

3 (j- 1 )3/2 (5.61)
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The normalization condition is obtained by substituting

(5.49) into (5.53) to obtain

(-h) -

G (k,.) = bk i d Ai_)

(0)

where

:2/3_

Desaubies (1973) showed that this could be approximated

G2 (,,) = 2rbk 1/3(C,)2_f 2 ) i- I  (5.62)

where I was defined by (5.55) but with lower limit of

integration z0 instead of -h. With the assumption that

w <<N(z), so that we are considering locations far from the

turning point, I - bN0 and we can make use of the asymp-

totic expression (5.50) to write

W(kwz) =1 ( 2_2) 221 f 2 t2 N(z)- -

(5.63)

which is identical to GU's (2.9). The dispersion relation

is obtained from (5.61) and (5.49b). Wa obtain

2 1& -1
(J-I)'r(-f ) (N o- j) -b- (5.64)
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which is consistent with (5.63), and sin'e w <(N(z)(N 0 we

approximate this as

Sf )( b(5.65)

Mean-Square Wave Functions

To simplify the induction of the form of the

energy-density spectrum from various component spectra

Garrett and Munk made use of a simplifying assumption. They

proposed that the products of the wave functions UmUm*

could be replaced by their mean-square values averaged over

vertical phase (that is, between the zeroes of the func-

tion). The resulting mean-square functions are independent

of horizontal wavenumber, and can be viewed as averaged over

horizontal wavenumber or mode number (Desaubies, 1975).

When averaged this way, and with the assumption

that N(z) in the coefficients of the sin and cos of (5.60)

and (5.63) varies slowly over the phase, the mean square

wave functions are identical in both the low and higher

frequency cases. They are

UoU 0() = [N o N(z)] -l -2 (2_ 2 , (5.66a)S- -2~ -

U 1U1 (e,w) = N(z) NO 0 (W2 cos2  + f2 si2  , (5.66b)

-1 -2 2 2 + 2 2.

Tj2U2  (e,w) = N(z) N (: u, sin + ) , (5.66c)

U3 U3 ( , ) N [NWZ)3 (,2_f) (5.66d)

These apply when w < < N(z).
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Note that the horizontal velocity squared
*-MI-W2(2 f2

UU U U1 + U2 N(z) NO  (W + (5. 66e)

The averaged value of U1U 2  is given by

N k1 k2 is gi2 nb

U 2 U ~- if 1  (5.66f)

MUller et al. (1978) argue that the combina-

tion of local vertical averaging a;.d smearing of the mode

structure associated with the equivalent continuum corre-

sponds to a WKBJ approxim ,-on. This is not strictly

correct. As an alternative ve might view the vertical

averaging as being consisti~rt A ensemble averaging over a

random vertical phase which is introduced with the "equiva-

lent continuum". The Brint-NVisila frequency is assumed to

vary slowly compared with the phase, consistent with a WKB

approximation.

This wave-function model predicts several simple

results. In particular, the ratio of the average potential

energy Ep associated with waves of frequency w to the

average horizontal kinetic energy Ekh of those waves is

given by

2 -rp/Ekh - N U0U0 /UU (5.67a)
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or from (5.66)

Ep/Ekh = ( 2 f2)/(c2+f 2 ) (5.67b)

The ratio of potential energy to the total kinetic energy is

N2  -2 2_2
E!E = - 2 " (5.67c)

1 2 ( + f + ( 2 f2 )

At the inertial frequency the vertical particle displace-

ments are zero and Ep=O. At frequencies f<<(<<N

Ep/Ekh Ep/E k - 1 (5.67d)

so that in this frequency range most of the kinetic energy

is associated with horizontal velocities, and there is

approximate energy partition between potential and kinetic.

Relations (5.67) are not appropriate near owmN. They were

derived from wavefunctions which had been simplified with

the assumption that w <<N. For f(<(wN (5.67b) predicts

that Ep/Ekhul and Ep/Ek-l/2 which means that half of the

kinetic energy is associated with horizontal currents. At

w wN, however, the wave motion should be strictly vertical

so that Ekh should equal zero.
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By vertically averaging (5.48) and (5.49) without

the assumption (L <<N Desaubies found

N2  W2_ f 2

Epkh N2/E 2 
-

2 +f 2  (5.68a)

and

N2  2 2 (5.68b)
Ep/Ek = --

E2P/Ek 2 2 2 2_ 2, (w2 f2 (N2_2 + 2 ._f,2

At w=f, Ep=O and Ek=Ekh. At w-N, Ekh=O and so Ep/Ekh--

and EP/Ek=1. Note that there is energy equipartition between

potential and kinetic energy only at w-N. The usual linear

result Ep=Ek is not true for inertio-internal waves.

Relations (5.68a) and (5.68b) are appropriate away from the

turning depth of the frequency in question. For depths

closer to the turning point than the last zero of Ai (see

Fig. 5.1) a modification is required (see Desaubies, 1973).

5.2.4 The Energy-Density Spectrum

Garrett and Munk (1972) proposed that Ec(k,w)

have the form

E (k,wi) = ck* (c)A(2) B(w) (5.69a)

5-33



- -- v... . .. .. . ... - .-- .

where k*(w) is a measure of the wavenumber bandwidth and

X-k/k*. The wavenumber dependence is constrained such

that A(X)=O for - KI(w)/k*(w) so that there is no

energy associated with modes of horizontal wavenumber less

than that of the greatest mode. In most cases X1 is suffi-

ciently small that it can be taken as zero.

The wave number dependence is constrained such

that

f. A(X) 1 (5.69b)

and

Jdk EC(k,w) = c B() . (5.69c)

From the normalization condition (5.52), the equivalent

continuum counterpart to (5.17) is

E 0 bfdw dk EC(k,wI) (569d)

or N
-o - cbfdw B(m)

f

which relates c and the total energy per unit area E0

(which has units m3s-2).

GM72 required that the frequency dependence be

such that CO0 (w), Cl 1 ( w) and C2 2 ( w) (from 5.45) have an
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w- 2 behavior for >>f, and that Cll(w) and C2 2 (w) exhibit

a cusp at w-f. The simple form

B(_) = - 2f for f<w<N (5.70)

=0 otherwise

which satisfies these rather gross constraints, was pro-

posed. Then from (5.69d) c=2fEo(7b)-l.

GM72 proposed a very simple "top hat" form for
A( ,):

A(X) = 1 for 0<),<1 (5.71a)

= 0 otherwise

The bandwidth k*(w) is determined from the high mode, low

frequency dispersion relation (5.59) as

k,(w) = bN ( 2f (5.71b)

0

The quantity J* may be viewed as the equivalent modal band-

width since (5.71a) and (5.71b) imply that energy only
exists at wavenumbers corresponding to mode numbers less
than J,. With (5.71), predicted towed wavenumber spectra
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exhibit a k-2 dependence which is observed.

Equations (5.69)-(5.71) completely determine the

energy density spectrum. Estimates of moored and towed

spectra can be obtained from (5.45) and (5.47) and the phase

average wavefunctions (5.66). The moored spectrum of iso-

therm displacement MS7-(u)-E-C0 0 (0,w,z,z) can be obtained by

substituting (5.66a) and (5.69)-(5.71) into (5.45) to yield

N IMS( 2 E0 f~ -_f 2 (5.72a)
0

The moored spectrum of horizontal velocity MSu(ti,)

Cll(O,c1w,z,z) + C2 2 (0,(L,Z,Z) can be obtained by substi- i

tuting (5.66b)-(5.66c,) and (5.69)-(5.71) into (5.45) to

yield

Ef _____(5.72b)

NM~(i) bN 3 2 2
0 f& w £)

From (5.47), (5.66a) and (5.70) GM derive the

towed horizontal wavenumber spectrum TS E(kl )-=Coo (kl , , Zz)

as

N
N~- -3.( ) w 'co (k*/kl (5.72c)N 1S (k E j~ fj d w cos
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where w* is defined by

J* 2 f2)

and it represents the lowest frequency which can be asso-

ciated with wavenumber kI . For f<<w*<<N

NTS2 F 0  k -2 (5.72d)

TS (k I ) b 2 N 2 J*

0

Figure 5.2 from GM72 shows horizontal kinetic

energy frequency spectra and vertical displacement horizon-

tal wavenumber spectra from several experiments. The figure

also shows predicted spectral levels from eqt'ation (5.71b)

and (5.71c). The model-predicted frequency spectra are in

good agreement with the data over a substantial part of the

spectra. Of the two low frequency peaks apparent in the

data the lower is at the local inertial frequency of the

experiments. The model predictions were for a slightly low-

er latitude (300 versus 390 N) and the model peak is slight-

ly displaced. The higher frequency peak in the data is of

semi-diurnal frequency and probably represents an internal-

tide effect. The model prediction cut off at the specified

level value of N. In the figure n=/4 means a frequency

25% of 3 cph. The wavenumber spectra are in good agreement

with the data for low wavenumbers (less than about 10 cpkm).

The data does not show the model predicted roll-off at

higher wavenumbers.
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Garrett and Munk argued that the continuation of

Fofonoff's Bermuda spectra beyond the local Brunt-Viisili

frequency and the continuation of Ewart's wavenumber spec-

tra beyond k*(w) were due to "fine-structure".

For the predictions above PE 0 =0.382 Joules
cm- 2 , b=1300m and NO=3 cph (6r hr- 1 ). This implies

E0=3.7 m3s-2 . If we write Eo=b 3NoE' , where E' is a dimen-

* sionless constant, then with these values of b and No,

E'=2 xlO- 5 , a value determined in GM72.

Garrett and Munk also found good agreement with

the rather limited data which at that time was available to

describe coherence. It is important to note that the fre-

quency spectra (5.72a) and (5.72b) do not depend on the

wavenumber or mode number bandwidths (i(w) and j*), so that

their results could be obtained for essentially a single

energetic mode. In addition, the horizontal wavenumber

spectra (5.72d) could be obtained with a single mode of

number 1/2j*. It is the lack of coherence in data which

demands that the wave field be viewed as a many-mode super-

position.

Garrett and Munk produced a revised model in

1975 based on the hypothesis that much of the observed

fine-structure was actually the result of internal wave

strain. In the model (GM75), they replaced the top-hat

wavenumber function A(X) by

A(A) - (t-) (1+X) - t t - 2.5 (5.73a)
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and reduced the bandwidth

) = f 2 (5.7 3b)
4 0

by reducing j* from 20 to 6. As defined in (5.72a)

fdA A() = 1 (5 .73c)

but most of the energy is contained in x<l. Figures 5.3

and 5.4 compare GM75 model predictions with isotherm dis-

placement frequency and horizontal wavenumber spectra com-

puted from observations by Cairns (1974) and Katz (1974).

The frequency spectra (Figure 5.3) agree very well except

near the local Brunt-Vaislal frequency where the observa-

tions show a peak. (We note that GM75 and GM72 frequency

spectra are equivalent since they do not depend on the

form of A()). The wavenumber spectra (Figure 5.4) also

agree very well. The range of agreement is now extended to

wavenumbers of about 2xl0-2 cpm, or wavelengths of 50 m.

This is a major improvement over the GM72 model (Figure

5.2).

Figure 5.5 shows a comparison between a normal-

ized spectrum of isotherm displacement in terms of vertical

wavenumber from (Millard, 1972) and a GM75 model prediction.

The vertical wavenumber spectrum, or "dropped spectrum

(DS)", was computed from temperature spectra in vertical

wavenumbers which were converted to displacement spectra
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using the mean temperature gradient. The local vertical

wavenumber is defined in the model as

2z  2 2 N2 -.2 2 1 2 N2
B k 2- for w<<N (5.74a)

w _I b2N 2
0

from the dispersion relation (5.59), and

2,2N2
*2 = 2 *N(5.74b)

b2N
0

We see that k/k*(w)=6/$*. We define Ec(k,w) and Ec(B,w)

such that

ffdkdw Ec(kw) =ff dkdS Ec(k,B) =ff dadu (8,.) (5.75a)

and

c ( Sw) - Ec(k,w) g = Ec (k,w) ( 2 -f 2)i N -  (5.75b)

or

E2 Eo
Ec(,w) -A($/4) B(w) a*(- )

5-43



Cairns and Williams (1976) described a model for

the energy density in terms of discrete modes:

E.M -2 E fB(w) H(j) (5.76a)i t 0

where

Op

H . 2+j,2) E (j2+j,2) - p  (5.76b)

J=1

Observations from a freely drifting midwater instrument

package which supported a vertical array of thermistors

were used to derive estimates of j* and p. The model-

predicted vertical coherences agree well with those

derived from the observations for j,=3 and p=1 (Figure

5.6). Then the isotherm displacement dropped spectrum

DS.(w) (where subscripts refers to isotherm displacement)

is defined as

DS5() dw U0 U0 Ec(B,W) . (5. 77)

The modeled and measured DS diverge at wavenumbers of about

10-1 cpm.

The value of t in (5.73a) was determined by match-

ing the model-predicted and observed DS. The value of J*

was determined from a consideration of moored vertical and

5-44



103

i. lot-

- 10'

cc iO

0
0-

1.0

w

U1
-I

45-4



moored horizontal coherences (MVC and MHC). The model MVC

is not a function of frequency (consistent with the data in

Figure 5.3), and it decreases as the bandwidth j*

decreases. The energy level E0 is that derived in GM72.

5.2.5 Model Validation

The success of the internal wave spectrum models

of Garrett and Munk and succeeding researchers can only be

evaluated in the light of observational evidence. We have

already discussed the work of Cairns (1975), who found good

agreement throughout most of the frequency band between

GM75 and observations of isotherm displacement. Discre-

pancies near the local B-V frequency led Cairns and Williams

to modify the modal dependence of the model (see Section

5.2.4, Equation 5.77) to improve agreement with observa-
tions. Figure 5-6 shows some of their results. Note the
localized peak in the power spectrum near N which was not

present in Cairns' results.

Gregg (1977a) analyzed temperature records from

several cruises in the North Pacific, one in the South

Pacific, and records taken during MODE. All of the result-

ing temperature vertical wavenumber spectra showed an

inflection point in the wavenumber range between 0.06 cpm

and 0.1 cpm. At low wavenumbers the spectra decreased as

k-3 (see Figure 5.7). GM75 indicated a k- 2 .5 slope

across the whole wavenumber band. As Gregg points out, the

most striking fact in his study is not the discrepancies

between GM75 and observations, but the striking similar-

ities among the spectra, which were collected at widely
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separated locations. This fact lends credence to GM's

assumption of a wide-spread uniformity (at least to a

certain extent) in the internal wave field.

IWEX (Internal Wave Experiment; Briscoe, 1975)

provided the first data set which contained sufficient

horizontal, vertical, and temporal scales to allow an

examination of the assumptions embodied in GM-class models.

The IWEX array consisted of a trimooring of current meters,

temperature sensors, and vertical temperature gradient

sensors in a nearly perfect tetrahedral shape (including the

base). Sensor depths ranged from 604 m to 2050 m in the

Hatteras Abyssal Plain. Temperature gradients were measured

over a vertical distance of 1.74 m. Horizontal and verti-

cal temperature sensor separations ranged from 2 m to

0(1500 m), while current meter separations ranged from 7 m

to 0(500 m). The array was in place for 42 days in late

1973.

MUller et al. (1978) performed a comprehensive

analysis of the IWEX data. They calculated numerically all

of the possible cross-spectra as a function of frequency (a

total of 1444 auto- and cross-spectra!). They first ana-

lyzed spectra to determine the characteristics of the field.

Autospectra showed peaks at the inertial and tidal (M2 )

frequencies, and smaller peaks at the local B-V frequencies.

Coherences between the same components of the wave motions

showed that the high frequency portion of the data do not

contain pure internal waves. Further examination revealed

contamination by temperature and current finestructure, as

well as current noise. Most of the low frequency motions,
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on the other hand, can be ascribed to internal waves. The

wave motions proved to be very nearly horizontally iso-

tropic, except at low frequencies (especially near the M2

tide) where southeastward propagation was evident. Some

slight vertical asymetries were apparent also. The equiva-

lent bandwidth of the power spectra varied from 20 to 10

with increasing frequency. At high wavenumbers the spectra

dropped off as k- t, where 2<t<3, while the low wavenumber

spectra contained peaks at mode numbers 0(1-2). At low

frequencies the propagating wave interpretation was strongly

supported by the data; at high frequencies the standing mode

interpreation was favored; at intermediate frequencies

either interpretation was adequate.

The results obtained by MUller et al. showed that

most of the assumptions of GM-class models were valid for

the small portion (5%) of the total IWEX data set examined.

They developed a set of consistency relationships to show

how well any model conformed to results obtained by using

the complete data set. They determined that GM-class models

(i.e., models based on the assumptions listed on page 5-3)

cannot adequately characterize the IWEX spectra. Figure 5-8

shows plots of the consistency parameter, A2 , as a function

of frequency for several simple models (5-8a), the full GM75

model (5-8b), each of the individual GM model assumptions

(5-8c to 5-8g), and an IWEX-class model (see Muller et al.

for details).* A model is consistent when A2 values

fall below the dashed line (95% confidence limit) and are

randomly scattered about 1.0. In most cases the inconsis-

tencies occur at the extreme ends of the band ("M 2 or

Nmax).

*Briscoe (1973) demonstrated the stationarity of the IWEX
internal wave field. This assumption was not tested for
consistency.
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Miller et al., following the path of Garrett and

Munk, modified GM 75 to fit IWEX data. They factorized the

internal wave energy spectrum in the form

E(k,e,w,a) = E(w,a) A(k;w) S(9;w) (5.79)

where E(w, u) is the energy propagating upward or downward

at frequency w, A(k;w) is the normalized wavenumber distri-

bution, and S(O ;w ) is the directional distribution. These

last two are expressed as

S sFs kr- (5.80a)

k > kp

and
______ __ ~ -e0S2 (P+I) 2 p co2p (-o)

S(e;) = 21rF(2p+i) c (5.80b)

Equation (5.80a) provides for a sharp cutoff based on the

low wavenumber cutoff kp and the horizontal wave number

scale k,. The quantity t is the high wavenumber slope,

and s is a shape parameter. The distribution always has

a peak at kp. Equation (5.80b) allows for horizontal ani-

sotropy for a beam propagating in direction e0 with beam

width p. If p = 0 the distribution is isotropic. The

inclusion of a in (5.79) allows for vertical asymmetry.

Figure (5.9) shows the frequency dependence of the various

IWEX model parameters. Appropriate values from GM72,

GM75, and Cairns and Williams are noted on the right hand

vertical axes when they apply.
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Figure (5.8h) shows the consistency parameter for

the IWEX model (after inclusion of functions to parameterize

fine structure and current noise contamination). The model

is everywhere consistent except at M2 and near Nmax.

Muller et al. reached the conclusion that, in

general, GM-class models agree with IWEX data and that,

after some admittedly complex modifications, better agree-

ment can be obtained. It is important to recognize, how-

ever, that the representation by these models of the low

frequency components of the wave field is not very good.

The low frequency components tend to be highly non-

stationary.

Wunsch (1976) tried to find circumstances under

which deep ocean internal wave spectra differ significanty

from the GM-class models. The level and shape of the

spectra were quite constant except near topographic sources

(where anisotropy was present), regions of strong shear, and

the equator (where no inertial peak was present.)

Desaubies (1976) developed analytical expressions

for various internal wave spectra (moored, dropped, and

towed) and coherences (moored slant and vertical, towed

horizontal and vertical, and dropped horizontal). He used

Cairns and Williams' (1976) suggested modifications to

GM75; however, he formulated his expressions in terms of

continuous modal dependence, partly because of observational

evidence and partly because integrals are more easily

manipulated than summations. He found that his expressions

depended on the local ratio N(z)/f and on two model param-

eters: r = E0 b2 No and t = j/2bN O . Thus his models do

not depend on the exponential N(z) which Garrett and Munk

assumed. A survey of recent internal wave measurements
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showed that estimated values of r, t, and rt were remarkably

consistent despite varied measurement techniques. This

seems to further underline the general applicability of the

GM-type models.

In general, then, the GM approach to internal wave

spectra has been verified as more than suitable for at least

a first-order characterization of internal waves throughout

the deep ocean. The model may founder on a detailed analy-

sis, but it continues to serve as an excellent starting

point from which to begin a study of specific observations.
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5.3 FINE-STRUCTURE CONTAMINATION MODELS

5.3.1 The Fine-Structure Contamination Problem

In this section we will describe models which

have been proposed to describe the effects of irreversible

fine-structure on measurements of internal wave properties

such as vertical displacement or current. Before the

introduction about 15 years ago of electronic profiling

systems, vertical profile data was generally of poor verti-

cal resolution, and vertical profiles tended to appear quite

smooth. As higher resolution systems were introduced a

great deal of smaller scale (I to lOOm) vertical structure

was observed. Figure 5-10 (from Gregg, 1977b) shows a good

example of this fine structure. The fine structure has

often been described in terms of low-gradient layers and

thinner, high-gradient sheets. The visual observations made

with dye by Woods (1968) and Woods and Fosberry (1966,1967)

in the seasonal thermocline in the Mediterranean Sea suggest

sheets as thin as a few centimeters and layers on the order

of 4m.

Fine structure may result from a number of proc-

esses which may be thermodynamically reversible or irre-

versible. Internal waves may cause distortions of otherwise

smooth profiles. No mixing is involved in this case and the

process is essentially reversible. Mixing caused perhaps by

instability mechanisms or double-diffusion processes repre-

sents an irreversible source of fine structure. At this

time there appears to be a growing opinion that much of the

apparent fine-structure is due in fact to internal-wave

distortion. Important recent efforts in this direction
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have been described by Johnson, et al. (1978) and Desaubies

and Gregg (1980). Irreversible fine structure does exist,

however, and as the models described in this section make

clear it may significantly affect the measurement of

internal-wave properties.

The essence of the fine-structure contamination

problem was apparently first described by Phillips (1971)

and we recount his explanation before we discuss detailed

modeling of fine-structure effects. The problem is

illustrated most simply by considering the temperature

spectrum measured at a fixed point in the oceanic thermo-

cline which may be disturbed by internal gravity waves. The

water column with the fine-structure variations may heave

and subside past the observation point and the record

obtained will reflect this. If the undisturbed temperature

gradient were continuous and uniform the vertical displace-

ment of a fluid element would be proportional to the

variation in temperature AT according to the simple rela-

tionship

=-AT / 7-T
Z (5.81)

where a represents the mean, undisturbed temperature

gradient. Equation (5.81) can be viewed as the first

term in a Taylor series expansion for AT in terms of ,

or it can be derived dynamically by considering the heat

conservation equation in the limit of no horizontal ad-

vection, diffusion or sources. Then

tT = -wDz T (5.82)
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where w is the vertical velocity associated with the

internal wave field. Over a finite time interval

AT = -Jw3zT dt (5.83)

Now if over some depth interval we partition DzT into a

stationary mean (locally independent of depth) and deviation

as

z T = T + (D T) ' (5.84)zzz

then

AT = -z T fwdt -fw(zT)' dt. (5.85)

Equation (5.81) is recovered with the recognition that

= fwdt (5.86)

and with the assumption that the integral in the second

term on the right of (5.85) is small. It is this assump-

tion which the occurrence of irreversible fine-structure

calls into question.
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In spectral terms, if FT(w) is the observed

frequency spectrum of the temperature variation at a fixed

depth (moored say), then (5.81) implies

2 5 8

( ) = FT(W)/ ('ZT)2  (5.87)

where F,(w) is the true displacement frequency spectrum.

Since internal waves are described in essence by the

displacement or velocities they induce, (5.87) plays an

important role in the analysis of temperature time series

data.* With the occurrence of significant irreversible

fine-structure (5.87) is not appropriate and

FI(FE(w) F f (wI (7T) ( 5 .88)

where Ff(w) is the contribution to the temperature spectrum

which arises from the passage of fine-structure past the

instrument. It is the estimation of Ff(w) which is ofT
central interest in contamination estimation.

Similar comments apply to measurements of hori-

zontal velocity fluctuations at a fixed point or measurement

of either temperature or horizontal velocity along a hori-

zontal traverse. If there is a non-internal wave shear

*The reliance on the measurement of adv~cted scalar prop-

erties for the deduction of vertical displacement and
velocity statistics results from the fact that direct
vertical velocity measurements are extremely difficult.
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concentrated in some sort of sheet-layer structure then the

heaving of this structure may give rise to significant

signals which may enhance the perceived internal-wave

induced variations of the velocity field.

In the following subsections we will describe

models which have been put forth by Phillips (1971), Garrett

and Munk (1971) and McKean (1974) for the effects of fine-

structure on the measurement and determination of internal-

wave statistics.

5.3.2 Phillips' Analysis

Phillips (1971) derived expressions for the form

of the fine-structure contribution to spectra under ideal-

ized conditions. The analysis was straightforward and drew

attention to the problem. Suppose that in the undisturbed

state (no internal waves) the temperature field is specified

by Tm(z), a function which on the large scale increases

with height. On the small scale, however, Tm(z) increases

in some series of steps, being relatively constant in layers

separated by thin sheets where the gradient is far larger.

An internal wave motion results in the pattern of sheets and

layers being displaced from equilibrium so that a fixed

probe observes this pattern as it drifts slowly up and

down. The pattern is of course strained so that the spacing

of the sheets varies somewhat throughout the wave cycle.

Phillips presumed the straining effect to be small.

To a first approximation then the pattern can be

assumed to be carried rigidly up and down past the probe.

Let (t) be the vertical displacement from equilibrium of an
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isothermal surface (which we assume to move with the iso-

pycnal surface). Then

T(z,t) = Tm(Z- (t)) (5.89)

which means that the temperature at depth z and time t at

which the vertical displacement is L is equal to the

temperature of the isotherm at depth z-C in the undisturbed

state.

We consider a record spanning a large but finite

time period P of observation. We assume that the measured

temperature is periodic with period P. Then

T(t) = Cj exp (iJw0t) (5.90a)

-00

where wo = 2r/P and the frequency of each component is

W "jwo. The inverse transform is

I

=P
C.=- dTt)ep(iot .(50)

2
Equation (5.90b) can be integrated by parts to yield

2p
C. f

C 2 f dt 3tT exp (-ijwot) . (5.91)
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If we treat the sheets as step functions we have

3tT =), (AT) r (t-tr) (5.92)

t r r
r

where (AT)r is the change in T with the passage of the dis-

continuity at time tr. Then

-i (AT exp(-ij otr) (5.93)Cj =27j r 0 Tr

r

and

C = 1 (,T)r(AT)s exp f-ijw (t-ts)I. (5.94)
i I 4Tr 2 S s0r

We require that the magnitude of the temperature change be

uncorrelated with its occurrence and also that j be suf-

ficiently large that

where TZ is the typical time interval between crossings.

Then the ensemble average of the various terms in (5.94)

vanishes except for r=s and

<c.C*,> < 4 J<( T) r  (5 95a)

I 4T 2j r r
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< (AT) > (5.95b)r;2 2 r

where v is the average number of crossings per unit time.

The mean square value of the Fourier coefficients decreases

as j-2 or w- 2 . This w2 behavior is similar to that of

measured internal wave spectra. Therein lies the potential

difficulty of distinguishing internal wave-induced and

fine-structure-enhanced fluctuations.

Phillips also considered the case of finite

thickness sheets in which case

9tT = (AT)r fr (t-t (5.96)
r

where fr(t-tr) is a continuous function, non-zero only

within a short time interval around zero. In this case

(5.95a) applies but with the constraint

-5 -orS > '>> > £,(5.97)

where Ts is characteristic of the time a sheet takes to pass

the instrument. Result (5.95) is thus appropriate for

frequencies small compared with the sheet inverse time scale

and large compared with the layer inverse time scale.
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The spectral density function Cw) of the en-

semble of stationary random functions is given by

4'(w)dw = <C C' >  (5.98)
J J

in the limit P -• Therefore

(w) = 2 < (AT)2 > (5.99a)
2 Tr r

with

-1 -
S > (5.q9b)

If the thickness of the sheets is much less than

that of the layers the frequency range over which the w-2

behavior would exist would be quite large, perhaps masking

the local Brunt-Viisaila frequency cut-off associated with

internal wave motion.

This model for the effects of fine-structure is

essentially qualitative. It draws attention to the po-

tential problem, but it is not useful for the analysis of

actual time series data.
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5.3.3 Garrett and Munk's Analysis

Garrett and Munk (1971) performed a more general

analysis of the fine-structure contamination problem which

relates the fine-structure contribution to frequency spectra

to fine-structure vertical wavenumber spectra. No sheets-

layers assumption is required.

Define the covariance of temperature measurements

at a fixed depth z as

RT(T) = < T(t)T(t+r) > (5.100)

where the braces indicate ensemble averaging. Then at depth

zo

< T (t) T(t+r) > =ffd d 2 Tm(Zo- rl)Tm(Zo_2P 2r )

(5.101)

where P(;I, ;2; -) is the joint probability density func-

tion for displacement Cl, at time t and 2 at time t+-.

For a single realization let the temperature

profile referred to Tm (z ) be

T n(z) = (Z-Zo)T'+ (z) (5.102)

consisting of a vertically averaged mean gradient T' and a

fine-structure component e(z) which has zero vertical and

ensemble mean values. Then at zo

T(t) = -;(t)T' + e(z 0 - (t)) (5.103)
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and

<T(t) T(t+T)> < i2 >  T 2

-T' < 18 (z 0 -) + 2 (Z0 _ 1 >

+ <O (Z -Y e ( )> (5.104)

Since the displacement and fine-structure are statistically

uncorrelated and since their individual means are zero the

second term vanishes and

RT(T) (T) + r, (5.105)

where

(T) = T' 2 R(T)

is the "gradient covariance" with R, (r <i 2 > and

f (T d dI r(-'(
RT (t) Jd 1 2 ( 1 ~) 'lf2 T)(5.107)

is the "fine-structure covariance" with

r(, = < (Zo-; )9(z o-2 )> (5.108)

the fine-structure displacement correlation function. Note

that r(0)-<9 2 >.

To continue the analysis a form for the displace- [
ment Joint probability density function is required.

Garrett and Munk assumed that the displacement at any point j
arises from many different, independent wave components so
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that the central limit theorem should apply and the

displacements should be jointly normally distributed.

Then

2 - ;+ 2

P(;I, 2 ;) = (2 Z2)- (1-p ) exp 1 ,(5.109)

-(-c) =R ( rT/Z 2

is the displacement autocorrelation and Z2 =R, (0), the mean

square displacement.

With (5.109), (5.107) becomes

= fx r Zxj exD(-x (5.110)

f
Formally RT(r) does not vanish as r- and this is a defi-

ciency in the model pointed out by Garrett and Munk. The

fine-structure gives rise to temperature correlation at

very large times when even the displacements become

uncorrelated.

f
If r is specified then RT(r) can be determined

from (5.110) and the fine-structure frequency spectrumf
FT(w) is simply its Fourier transform. To simplify the

analysis expand P(T) in a Taylor series as

1- 2 2 4 0 (T4  (5.111)
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where

S2 P (.0)

Similarly

r(z) < > I- K 2z2+O(z4) (5.112)

where

2 -r' (0)/r(<0)

With (5.110), (5.111) and (5.112) imply

RT  1 - R 2 Z2 ST +. (5 13)

If KZ>>I, (5.113) shows that the fine-structure correlation

rolls off much more rapidly than the displacement correla-

tion function so that the small time approximation (5.111)

should be an adequate description of the internal wave

field. Since K can be viewed as an inverse fine-structure

length scale, the requirement KZ>>l means that internal wave

displacements must be large compared to the fine-structure

scale. This approximation may not be appropriate since

internal wave displacement and apparent fine-structure

scales are often of this same order of magnitude. It will

apply, however, to small-scale fine-structure, which may be

most significant in that small scales contribute signifi-

cantly to the high frequency measurement variance where

direct internal wave-induced variance is smallest.

The Fourier transform of (5.110) with (5.111)

yields after some manipulation

S( I exp ()1 k- I(F5.1)4
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where Fe(k) is the fine-structure vertical wavenumber

spectrum. Thus the fine-structure frequency spectrum is

related to the vertical wavenumber spectrum. The only

statistics of the internal wave field which enter this

result are S and Z. The former can be shown to be equal

to the wave-field root-mean square frequency. Equation

(5.114) can also be expressed in terms of the fine-struc-

ture gradient spectrum Fe,(k)=k2 F (k) as

f ( () = SZw - 2

FT = T zofJq exp(-q) Fe , (5.115)
0

Equations (5.114) and (5.115) are the essential results

of the analysis.

Estimation of the significance of the fine-

structure to the observed spectrum requires the specifi-

cation of Fe(k) or F6 '(k). The wavenumber spectrum

Fef (k) =e 2 /(ks -k (5.116)

roughly represents the case where the gradient e' consists

of a series of narrow spikes. Then from (5.115)

T (W) = SZ2 (ks-kz)

X e' 2  exp(-2T s ) -exp(-c2T 2 (5.117)

where

-1
T St= (I2 SZ k )
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The function in the brackets behaves as

2 2- -S2 for W << T

Sfor r£ -  << W << s

and

exp (-w 2 ) for Ts- << . (5.118)

Over the frequency range < -  (5.99b), (~ ,

which is consistent with Phillips' result.

The ratio

y(w) = F ()/Fg(i) (5.119)

where Fg(w) is the frequency transform of R9(W), is a

measure of the significance of fine-structure to the

overall temperature spectrum. For the simple gradient

spectrum (5.116)

y(c) = (2/ ZS (5.120)kz W (W)

Further analysis requires the specification of the internal

wave displacement spectrum F,(w). Consider two models

(Figure 5-11)

Ft() 0 A r for wo 0 (5.121)

and

A -r for w <

F4(W) t 0 0

-r for < (5.122)
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Figure 5-11: Solid lines show the assumed frequency spectrum

from moored sensors (5.121) and wavenumber spec-

trum from towed sensors (5.122) in a log-log

presentation. For either case, the dashed

curves show the fine-structure spectrum when

y>l (left) and y<l (right) (from Garrett and

Munk, 1971).
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The first model represents frequency spectra where LO is

the local inertial frequency and wl the local Brunt-

Viisili frequency. The second model represents towed hori-

zontal wavenumber spectra, where w is identified with hori-

zontal wavenumber, since all of this analysis is formally

appropriate to either fixed point frequency spectra or fixed

depth horizontal wavenumber spectra. For r-2 and o << 1

rZTt~ 2 1 2 ) ( mi/ c )A

kZZ (5.123)

for the two models respectively over the frequency range

(5.99b). For the frequency spectra the ratio of wi/wo in

the upper ocean is of 0(102). Take lOm for a typical

layer thickness and vertical displacement. Then kIZ2Tr and

Y=0(i). For the wavenumber spectra take wo=10 - 2 cpkm

and wi-1 0 cpkm following Garrett and Munk (1972). Then

wI/(*,lO 3 and y is a factor of ten larger.

Garrett and Munk included in their analysis

estimates of vertical coherence. With the assumption that

motions at all depths are coherent and in phase, they find

CohT(w,H) = [1+y(w) CohT(wH) [+Y(w) (5.124)

where CohT(fH) is the coherence obtained from the fine

structure correlation function for points a distance H

apart. In this case for T~l<<W<<Ts-I

CohT( ,1) = 2fdq exp (_q-2 q-3 cosXq (5.125)

0
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where

This result is plotted in Figure 5-12. The parameter A in-

volves only the characteristic vertical velocity SZ of the

internal wave field and over the appropriate frequency

range is not a function of the fine-structure. The fine-

structure statistics affect the overall coherence through

the factor Y(w) in (5.124). If y is independent of frequency,

as in (5.123), then CohT(w,H) depends only on the product.
f

wH. In particular, CohT(w,H)= J for COhT(w,H)= (y-1)y -1 .

For Y>>l and y-l we have y=i and 0 respectively, or

(wH) = 0.95 SZ, 1.SSZ (5.126)

For S Z(N(Z)f) 40.4 cph and Zzl0 m

(wY)A= 4, 7 m,

which are of the. same order of magnitude as Webster's

(1971) estimate

(wY),= 13 m.

Garrett and Munk, however, point out that Webster's data

extend to far lower frequencies than might be expected to

be strongly affected by fine-structure.
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5.3.4 McKean's Analysis

McKean (1974) modified the approach followed

by Garrett and Munk by casting his analysis in the form

of structure ra" er than correlation functions. The

structure function formalism avoids the necessity of the

fine-structure approximation. This analysis differs also

from Garrett's and Mank's in that the fine-structure is

described in terms of the Poisson statistics of the layers.

McKean cast his analysis in terms of the contamination of

internal-wave statistics of the sort which would be computed

from data obtained from horizontally traversing measurement

systems. These include horizontal wavenumber spectra and

vertical coherence. The specific motivation of this work

was the analysis of data obtained with the Self-Propelled

Underwater Research Vehici- (SPURV) of the Applied Physics

Laboratory of the University of Washington.

Assume a randomly layered temperature field Tm(z)

as before. Then the temperature record measured by a probe

traversing the medium at some fixed depth zo is

T(x) = T m(Z - (x).) (5.127)

where (x) is the internal wave induced displacement at

location x. The structure function which describes the

temperature field is defined as

DT(X) = < [T(x)-T(x+X)j2 > (5.128)
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In terms of the more common correlation function RT(M) and

spectrum FT(k) (where k here refers to horizontal wave-

number)

DT(X) = 2tRIT(0)-RT(1)l (5.129)

and

D = iTfd FT(k) (3-cos k.) (5.130)

Clearly DT(X) depends upon the statistics of both the medium

and the internal wave field, and a key point of Garrett and

Munk's analysis is the separation and definition of these

statistics. With the assumption of horizontal homogeneity

and vertical stationarity the medium can be described in

terms of the structure function

D = Tm(z)-Tm(z+i) 2  (5.131)

The fraction of all points xl-x2=X having the specified

difference -- '2= depends on the joint distribution of

internal wave denoted by Q(A,t )d*. The total contribution

is then

D T 0, Jid$_ D m(*)1 k' (5.132)

There are thus two parts to the estimation of DT( ).

First the structure function Dm(P) of the medium must be
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defined, and second the internal wave relative displacement

distribution must be specified. Equation (5.132) is the

structure function conterpart to (5.101). The structure

function formalism combined with the Poisson fine-structure

description, however, yields an integrable form which avoids

the fine-structure approximation used in the earlier

effort. Note that in the simple case of a medium with a

uniform gradient, Tm(z)= T'z, Dm($)=T'2. 2. Then

DT(X) T 2 fdPQ(XP),p 2

= T' 2 ) (5.133)

in analogy with (5.106). Then by virtue of 5.130,

F;(k)=FT(k)/T'2 .

Assume that in general the medium is described

by a background temperature gradient T' and sheets of

temperature change ' n Then

N
TmZ)-T m(Z) = (z-z )T +E 9n (5.134)

n=1
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where in this case the temperature internal z-zo contains

N layers. Squaring and averaging over the steps yield

T,(z)-Tm( .)12 > j(z-z0))T I + 2N(z-z)T -
2 e 2  e2 _ - ) b n

N + N n an  (5.135)

If the sheets are distributed randomly the probability of

finding exactly N sheets in an interval (zl-z o ) is given by

the Poisson distribution

-sN -1P(Ns) e-S(s /N), s = (z-z )h- (5.136)

where h is the mean interval between layers. To obtain an

average value for <[ Tm(z)-Tm(zo)1 2 > in the randomly

layered medium (5.135) must be weighted by the Poisson

probability distribution function. For a continuous

process

<u> dB(u) (5.137)

where dB(u) is the probability that any value of u, u. say,

lies between u and u + du. For the discrete Poisson process

(5.136) the average value of any function f of N is given by

f = f(N) P(N,s). (5.138)

N=O
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Relation (5.138) can be applied to (5.135) to obtain the

average structure function for the randomly layered medium:

Dm( = (T' + 9 h-i /, 2 + e i h - 1 , >o (5.139)
m ~ nn

where Th + h -1  is identified with the mean gradient T'

and 9n2,#h-l represents the fluctuations due to random

layering.

With (5.139), (5.132) yields

DT(\) =T2 < 2 > + ;2 h- < (5.140)
n

DTg (X) + DT (X) (5,141)

in analogy with (5.105). To actually carry out the averag-

ing implied in (5.140) an explicit form for the internal-

wave displacement distribution function is required. McKean

proposed two centrally peaked forms:

Gaussian: Q(XW) = (2rD exp[, (5.142)

Rayleigh: Q(X,,p)= (2D )exp (5.143)

)2
which depend only on the standard deviation., D (X)- <(- 2) >.
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For these distributions:

f 2[1
DT (X) = (LO 9 n h :(X) , (5.144)

DTf )=2 ~ r() (5.145)D (X) = 2-1 ;2 h-1 D()

respectively. These results are very close.

The fine-structure spectrum due to layering

depends in detail on the spectrum of the internal waves

which displace the layer. McKean followed Garrett and Munk

and proposed the model

FAk-2 k 1l<k<kn

0 otherwise (5.146)

Then D C(X) can be obtained from the displacement counterpart

to (5.130), Df( X) from (5.144) or (5.145), and finally
Ff T

Ff(k) from the inverse of (5.130):

F (k) =fdX cos (kX) D f (0)-j DT (X) (5.147)

where we have made use of the fact that the correlation

function R must go to zero as X so that from (5.129)
f f

DT ()= 2 RT(O)

The resulting fine-structure spectrum for bandwidth

knkl- I  100 is shown in Figure 5-13 obtained with typical

values from the GM72 model of kn - 27(3 cph) and s - 15 m hr -1 .

The fine-structure falls into two distinct regimes separated
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Figure 5-13: Fine-structure spectrum (solid line) generated

by internal wave spectrum (broken line). Units

are arbitrary.
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by an inflection at k n. Approximate results can be

derived for these bands. For k > kn denote the spectrum

by F+(k). Then for k >> kn McKean dec ved

F+(k)= 2-1 S (5.148)

where S is given by

S2 = 2f ! k2p(k) (5.149)

which can be interpreted as either the root-mean square

slope for wavenumber spectra, or the root-mean vertical

velocity for frequency spectra. (Thus, S is here equivalent

to the product SZ in Garrett and Munk's analysis.) Equa-

tion (5.148) is basically identical to Phillips result.

For wavenumbers k < kn

F_(k) = n hlA ~k2  (5.150)

with

I r (f)sin1T) /inl~T

This result is obtained by neglecting the bandwidth en-

tirely; McKean did not discuss the error associated with
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this assumption. Since F+(k) is in principle measureable, a

relationship between F_(k) (which is the quantity required

to estimate fine-structure contamination) and F+(k) is

useful. McKean finds for r=2

F+F_ = nTk (5.151)

which depends only on the cut-off wavenumber kn. The

significance of (5.151) stems from the fact that if one

assumes that a spectrum obtained from data at wavenumber

k >> kn represents the effects of fine-structure alone then

the spectrum thus measured is exactly F+(k). Then F_(k)

at wavenumber k is immediately known given kn. The value

of _h-iA is thus determined. Within the band kl<k<kn
n

FT(k) = F (k)(-T)2 + F_(k)

so that if we assume F (k) = Ak - 2 the value of A can be

adjusted to fit the observed spectrum FT(k). Then F (k) and

F_(k) are completely specified.

To estimate fine-structure effects on the measure-

ment of internal-wave-induced temperature fluctuations at

two vertically separated locations an extension of the above

analysis is required. McKean extended Garrett and Munk's

result (5.124) to

CohT(k.H) =Coh(k.,H) + y(k)Cohf(kH) 1+y(k) (5.152)
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Here Coh(k,H) is the actual internal wave displacement

coherence and

y(k) F (k)/Fg(k) (as before),y~) T  T (5.153)

and

Cohf(kH)=XJlDf(XH)cos(kX dX Df(X,0)cos(kX),(5.l5 4 )

where

Df(X, H) = f d H+ IQ(x). (5.155)

In general the fine-structure coherence is less than one
(except at H=0 where it exactly equals one) so that the

coherence observed in the presence of fine-structure is

always less than the true coherence. Figure 5-14 shows the

numerically obtained fine-structure coherence for a band

limited dispiacement spectrum of the form Ak- 2 . Like the

fine-structure spectrum the results seem to fall into two

bands.

For k<<kn

Coh4(k,H) = A_(q) (5.156a)

= exp(-qi) [cosi-+ sinvf-]

2H2  (5.156b)
q - kH2= k n H

n 7rS
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Figure 5-14: Fine-structure coherence form McKean

(1974) for band-limited k2spectrum.
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with A(0.83)- (the half-coherence point).

For k>k n

fCohT(k,H) = A+(p)

= exp(-ap)cos(bp)

(5.157a)

with

a = 0.44, b = 1.21,

k HP Vr" S (5.157b)

with A+(0.67) = i (the half-coherence point). The result

(5.157) agrees closely with Garrett and Munk's prediction

(5.126) for Y>>.

The observed coherence according to (5.152)

depends on the true coherence Coh(k,H) and the fine-

structure ratio Y, as well as the fine-structure coherence

CohT(k,H) = A+. For wavenumbers or frequencies higher than

the cut-off kn the spectrum F approaches zero and y--.

Then the observed coherence is equal to the fine-structure

coherence. Consider a moored vertical array in an internal
wave field with parameters derived from GM72: S = 15m hr- 1

and kn - Wn = 6 Tr (cph). Then the half-coherence point

p-0. 67, with A40.67) - isatisfies the rule

(wH) 4 cph m.
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The minimum frequency in this band corresponds then to a

separation H = lm. Therefore, the extension of "fine-

structure coherence" into the forbidden band above the

Vaisala frequency should be measureable only for sensor

spacings on the order of lm or smaller.

The more important case concerns the influence

of "fine-structure coherence" in the overlap band (k<kn).

Taking the half-coherence point q = 0.83 with the GM72

parameters leads to

(H2 )1/2 = 5 cph m2 .

Now, to estimate the significance of the fine-structure

coherence we consider a near-limiting case of low frequency,

for instance w =(12 hr) -1 . The half coherence distance

becomes smaller for higher frequencies. Then Hl/ 2 - 7.8m.

Coincidentally, this corresponds to the GM72 rms internal-

wave amplitude Z = 7.9m. This suggests that the influence

of the fine-structure coherence is generally not important

for separations exceeding the mean-square amplitude.

McKean applied the decontamination model to a

7-km towed temperature data record. Vertical sensor separa-

tions were 2/3 and lm so that the internal-wave displace-

ment coherence Coh (k,H) was set to unity. The observed

temperature spectrum is shown in Figure (5-15) where k2FT(k)

is plotted. The spectral density shows a sharp drop at 18

cpkm (=kn). Similar breaks are seen in the two coherences

shown in Figure (5-16). After some manipulation including

the numerical modeling of the cross-correlation function
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Figure 5-15. Plot of k2 F (k) vs. wavenumber with a cut-
off wavenumb~r of 18 cpkm. (McKean, 1974).

zW 0 - - 1 __ _ _ _ _ __ _ _ _ _ _
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0.0 I 0 .0-
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cvkm cokm

(a) (b)

Figure 5-16. Coherence as a function of wavenumber (solid
line) compared with McKean's random layer model
with R=l, S=O.0016. (a) Vertical separation =
1 m. (b) Vertical separation = 2/3 m. (McKean,
1974).
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associated with a band-limited power law spectrum from which

D;(X,H) and then Q(X,X,H) are determined, McKean produced

the coherence estimates shown in Figure 5-16. The predicted

coherences up to roughly kn agree well with the observa-

tions. The wave slope S was adjusted for best fit with the

data.

The model thus produces results consistent with

the observations; such consistency should not, however, be

viewed as a proof that fine structure is in fact irreversi-

ble. Desaubies and Gregg (1980) have demonstrated that fine

structure observed in the main thermocline could be des-

cribed solely as the result of reversible internal wave

strain.
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